

Memorial Sloan Kettering Cancer Center

Lobular Carcinoma In situ (LCIS)

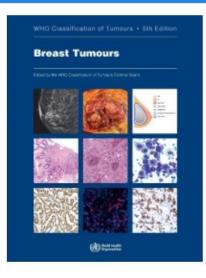
Morphologic variants and management implications

Edi Brogi MD PhD Attending Pathologist and Director of Breast Pathology

Pezcoller Seminar September 16, 2022 – Trento, Italy

Lobular Carcinoma In Situ (LCIS)

- Morphology
 - WHO 2019 update
- Differential diagnosis and pitfalls
- E-cadherin and related proteins
- Notes on management


WHO Classification of Breast Tumors (2019) 5th ed.

Epithelial Tumours of the Breast

- 1. Benign epithelial proliferations and precursors
- 2. Adenosis and benign sclerosing lesion
- 3. Adenomas
- 4. Epithelial-myoepithelial tumors
- 5. Papillary neoplasms

6. Non-invasive lobular neoplasia

- 7. DCIS
- 8. Invasive Breast Carcinoma
- 9. Rare and salivary gland-type tumors
- 10. Neuroendocrine neoplasms

Atypical Lobular Hyperplasia (ALH)

Lobular Carcinoma In situ (LCIS)

- Classic LCIS
- Florid LCIS
- Pleomorphic LCIS

WHO Classification of Breast Tumors (2019) 5th ed.

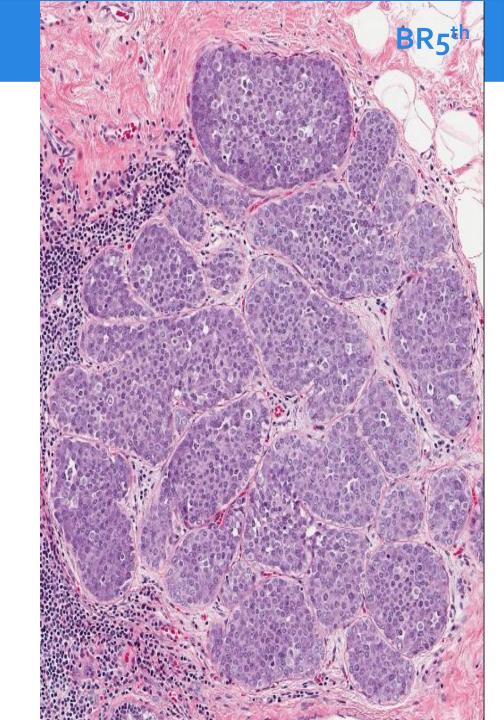
Epithelial Tumours of the Breast

- 1. Benign epithelial proliferations and precursors
- 2. Adenosis and benign sclerosing lesion
- 3. Adenomas
- 4. Epithelial-myoepithelial tumors
- 5. Papillary neoplasms

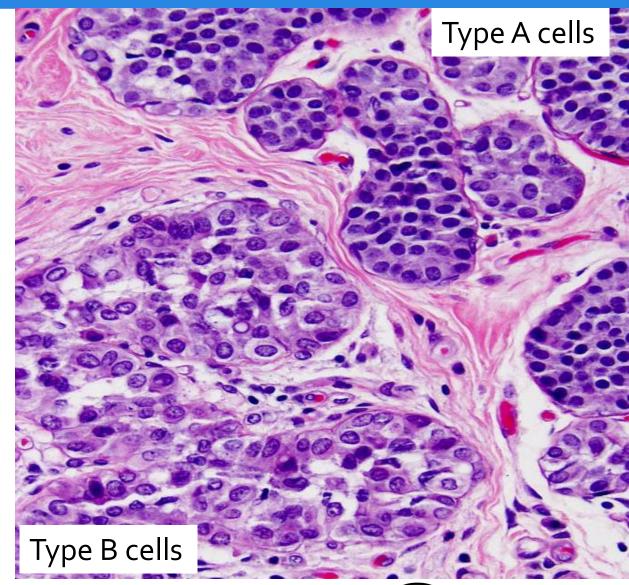
6. Non-invasive lobular neoplasia

- 7. DCIS
- 8. Invasive Breast Carcinoma
- 9. Rare and salivary gland-type tumors
- 10. Neuroendocrine neoplasms

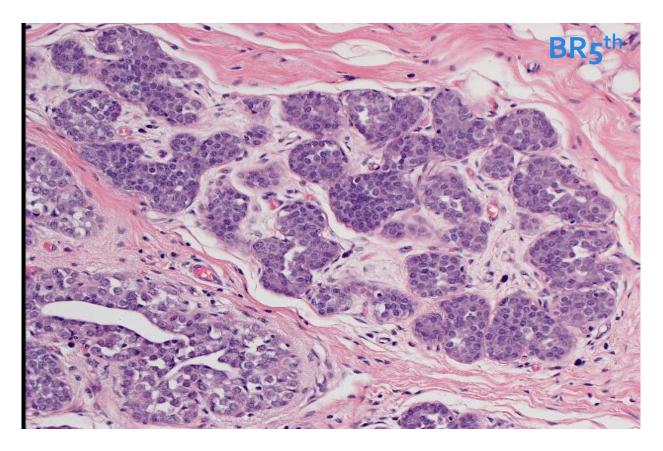
Atypical Lobular Hyperplasia (ALH)


Lobular Carcinoma In situ (LCIS)

- Classic LCIS
- Florid LCIS
- Pleomorphic LCIS

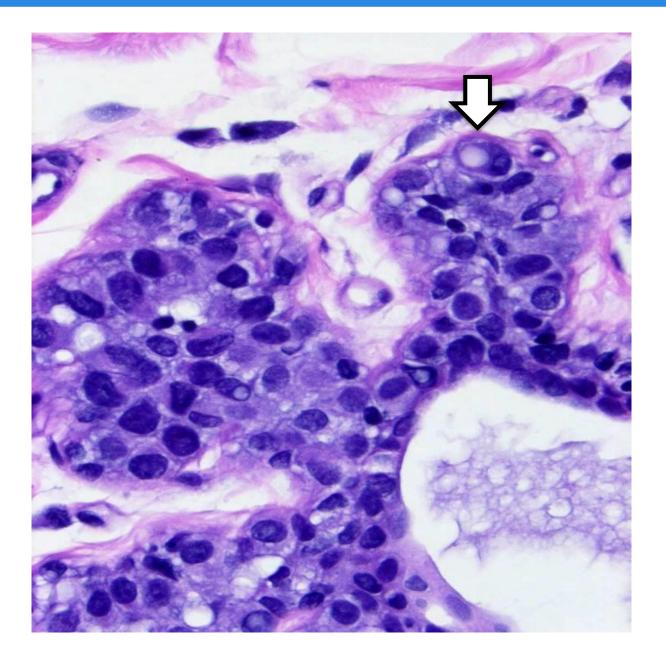

BR5th ed - Classic LCIS definition

- Dyscohesive proliferation of type A and/or type B epithelial cells.
- Type A cells are small cells with uniform hyperchromatic nuclei
- Type B cells have slightly larger vesicular nuclei, with mild variability in size and shape and with small nucleoli.
- The cell populations may be mixed in individual proliferations.


BR5th ed - Classic LCIS definition

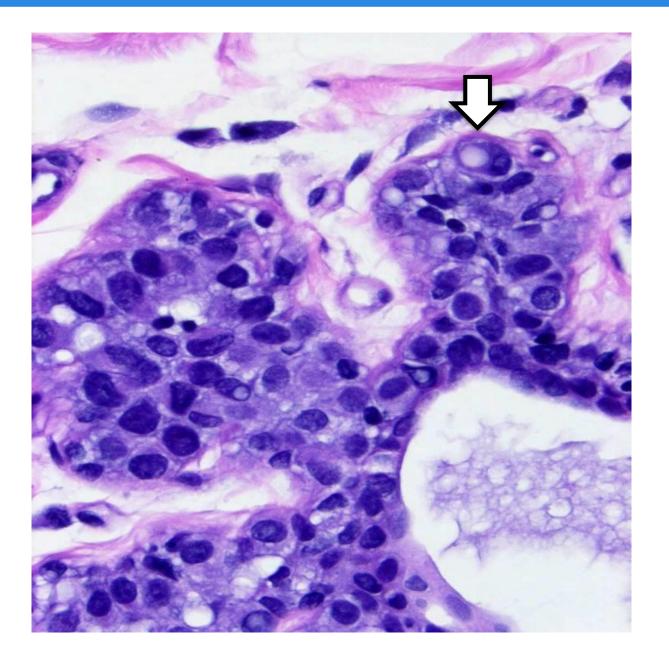
- Dyscohesive proliferation of type A and/or type B epithelial cells.
- Type A cells are small cells with uniform hyperchromatic nuclei
- Type B cells have slightly larger vesicular nuclei, with mild variability in size and shape and with small nucleoli.
- The cell populations may be mixed in individual proliferations.

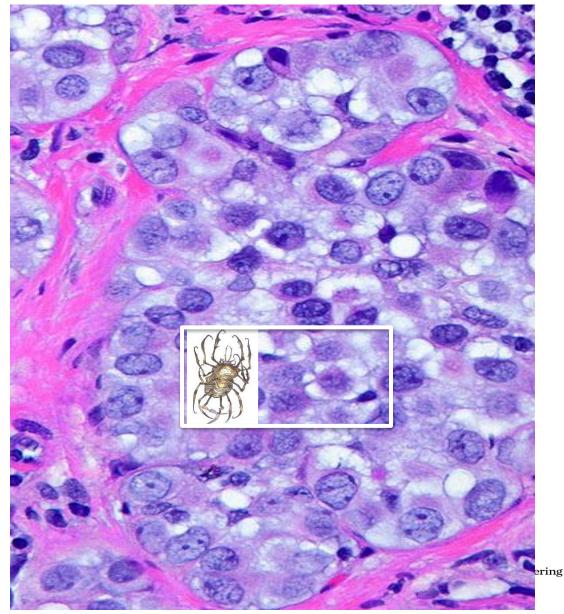
<50% acini filled and expanded



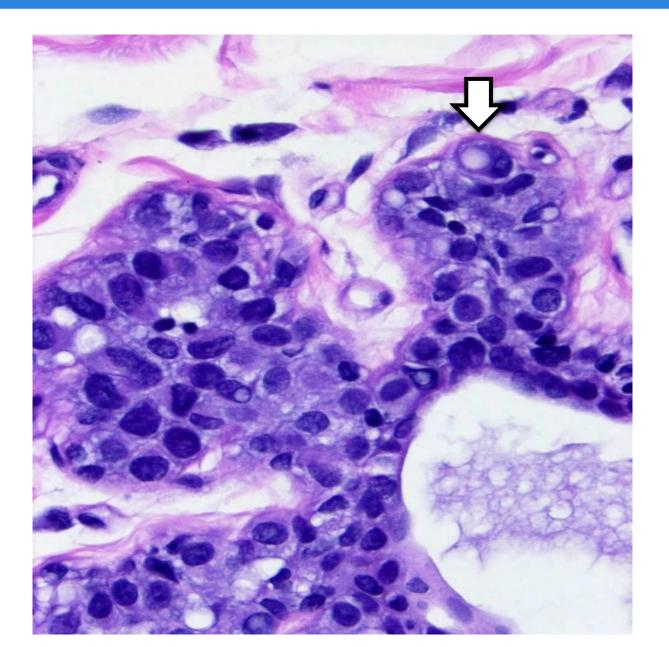
Non-invasive neoplastic proliferation of small, dyscohesive cells, originating in the TDLUs, <u>with or without pagetoid</u> <u>involvement of terminal ducts.</u>

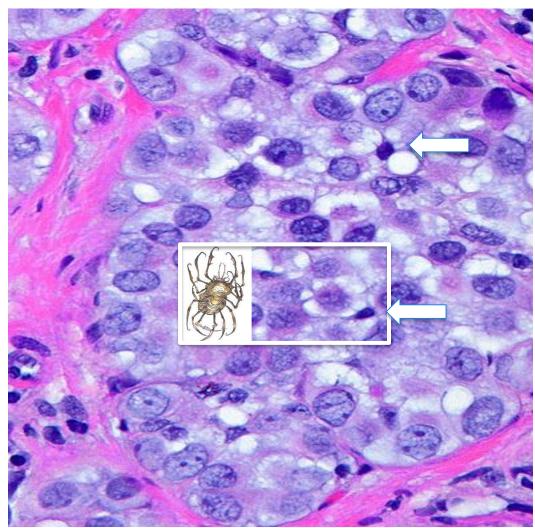
Fewer than half of the acini in a TDLU are filled and expanded by the neoplastic cells.




intracytoplasmic vacuoles

intracytoplasmic vacuoles

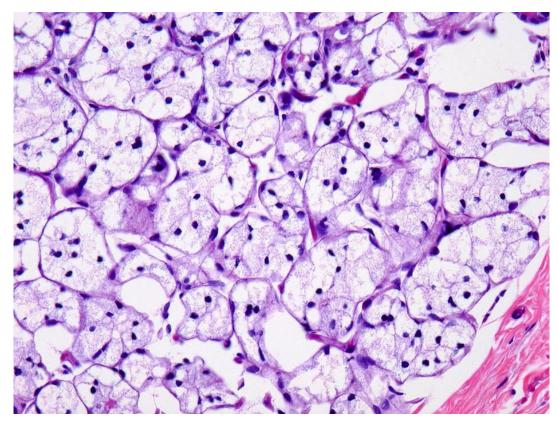

"spidery" cells

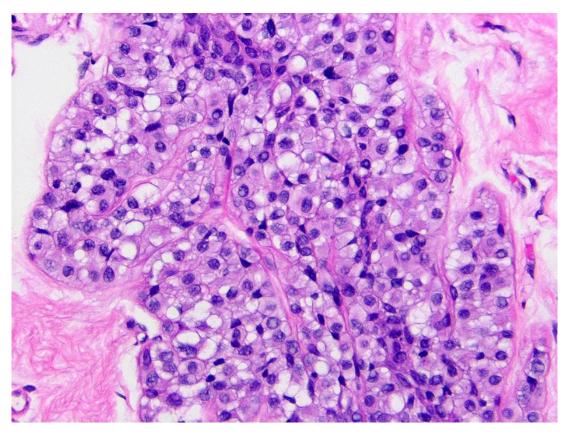


intracytoplasmic vacuoles

"spidery" cells

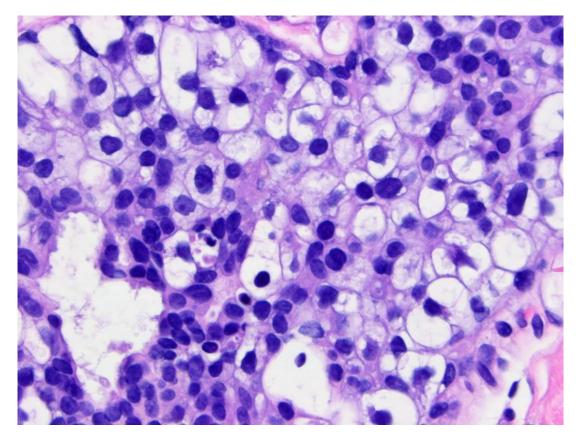
myoepithelial cell nuclei admixed with classic LN

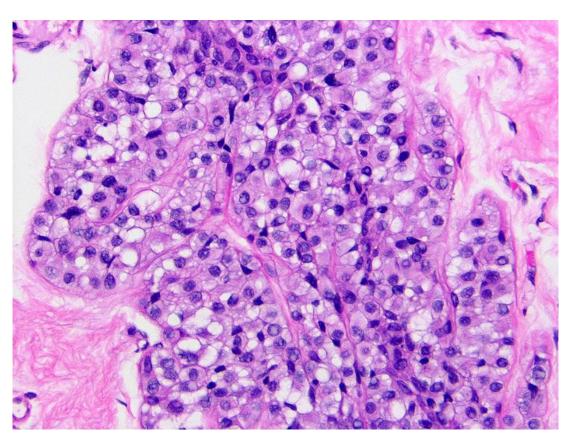

Classic LCIS/ALH - morphology and presentation


- Lobulocentric lesions
- +/- Pagetoid spread
- dyshesion
- cytomorphology
 - round-oval cells with central nuclei lack cell polarization ("fried egg" appearance)
 - low nuclear grade
 - inconspicuous nucleoli
 - intracytoplasmic vacuoles (signet ring)
- usually no mitotic activity
- BR5th- Single cell necrosis possible
- Ca²⁺ rare and minute

- ALH and classic LCIS usually are incidental findings
 - MRI may detect classic LCIS/ ALH
- Multifocal in ~80% cases
- Bilateral in 30-40% cases

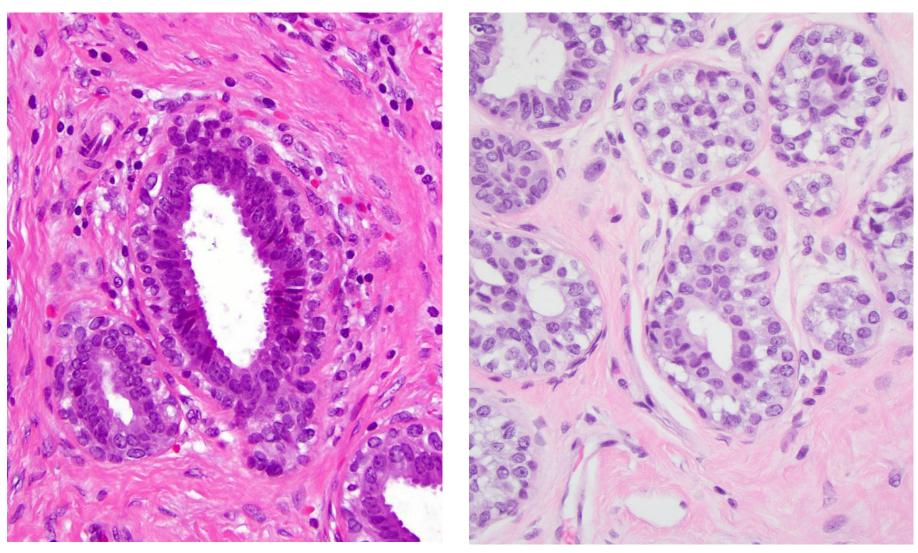
Morphologic mimics of classic LCIS/ ALH




Clear Cell Change

classic LCIS

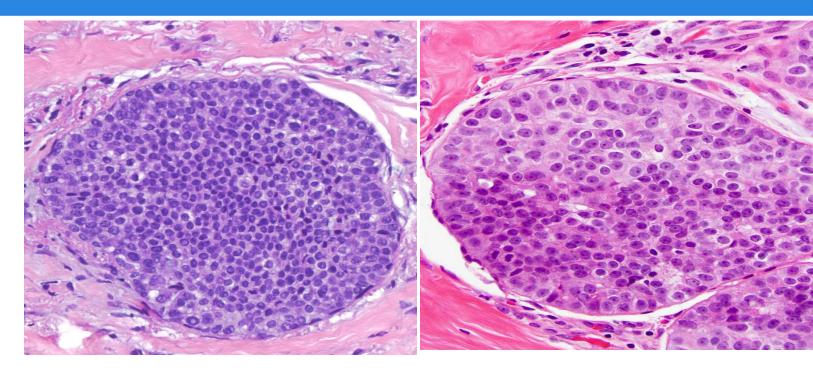
Morphologic mimics of classic LCIS/ ALH



Clear Cell DCIS

classic LCIS

Myoepithelial cells may mimic ALH

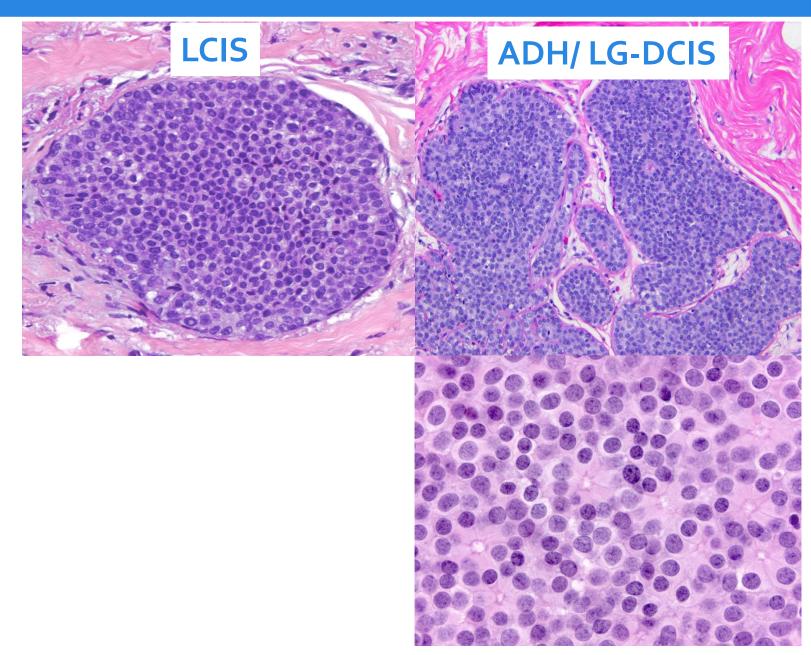


Myoepithelial cells

ALH

Classic LCIS/ ALH may mimic other lesions

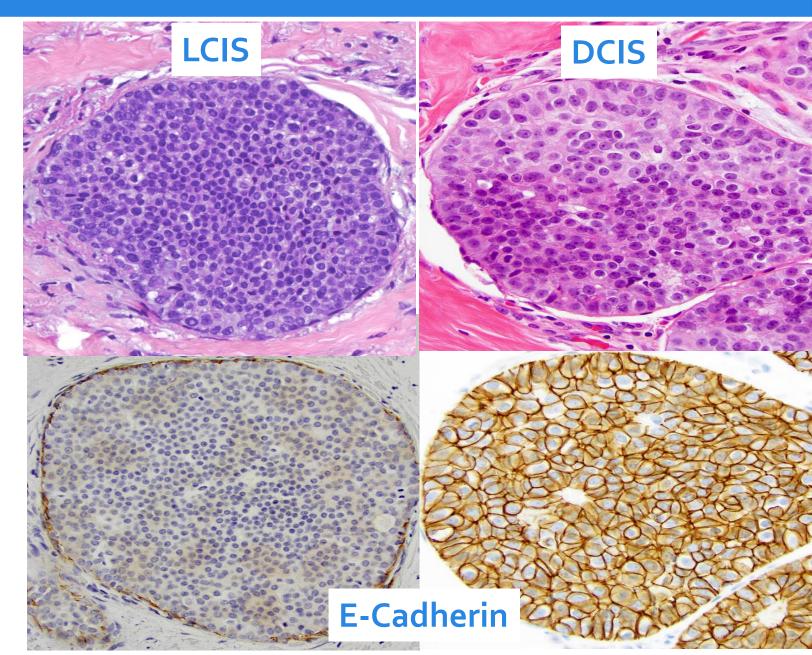
Classic LCIS may mimic Solid ADH/ Low Grade DCIS



Classic LCIS/ ALH may mimic other lesions

Classic LCIS may mimic Solid ADH/ Low Grade DCIS

Microacinar arrangement occurs <u>only</u> in ADH/ LG DCIS

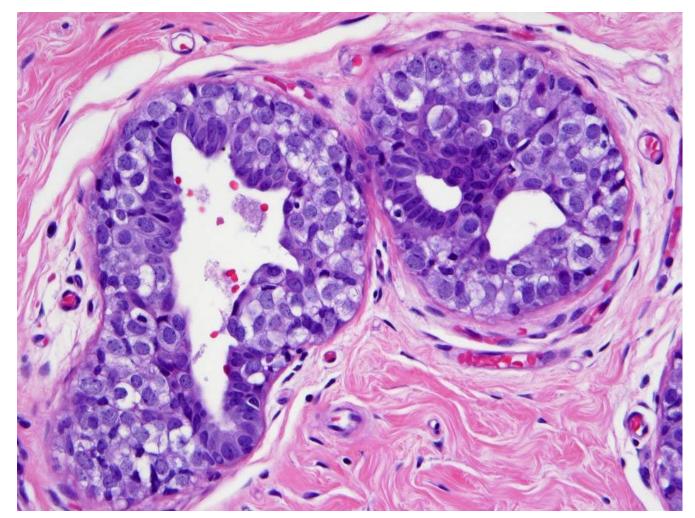

Classic LCIS/ ALH may mimic other lesions

Classic LCIS may mimic Solid ADH/ Low Grade DCIS

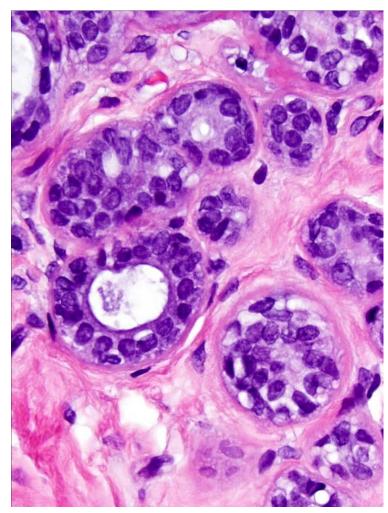
Microacinar arrangement occurs <u>only</u> in ADH/ LG DCIS

Immunohistochemistry

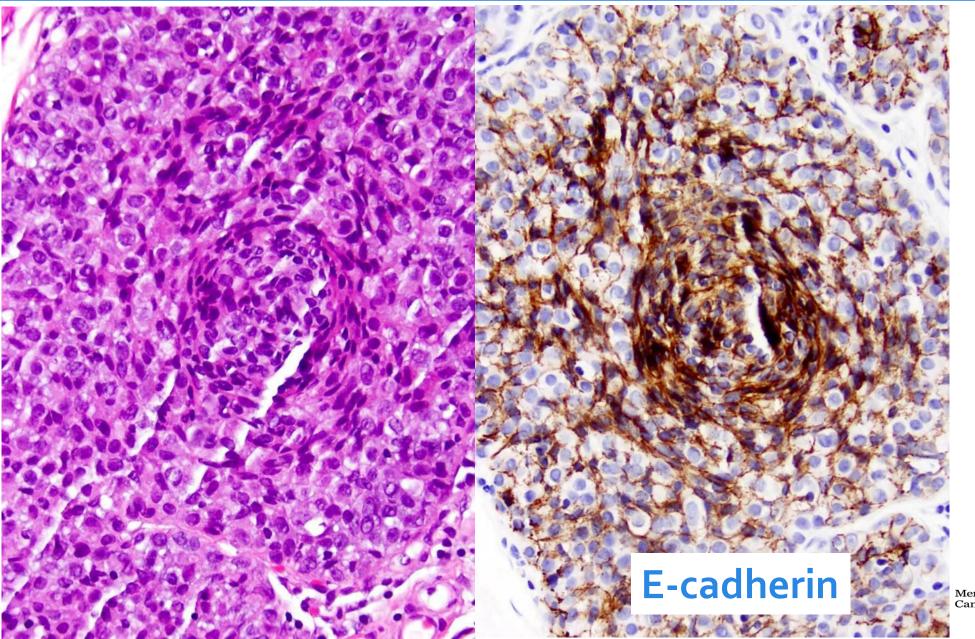
LCIS: E-cadherin-negative B-catenin-negative cytoplasmic P120



Classic LCIS/ ALH + another lesion \rightarrow few possible scenarios

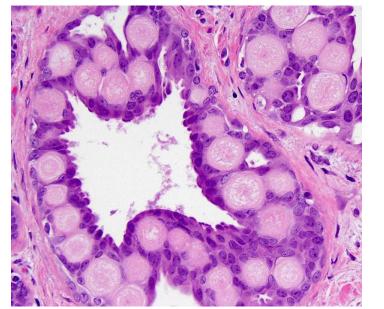

If ALH/ C-LCIS involves	May mimic
Normal acini (partial involvement)	• ADH
Usual ductal hyperplasia (UDH)	 UDH ADH Low grade DCIS "mixed" ductal and lobular mammary carcinoma in situ
Collagenous spherulosis	ADHLow grade DCIS
Sclerosing adenosis	Invasive lobular carcinoma

Classic LN partially involving normal acini



classic LN in normal acini Luminal cells + myoepith cells + LN cells 3 cell morphologies

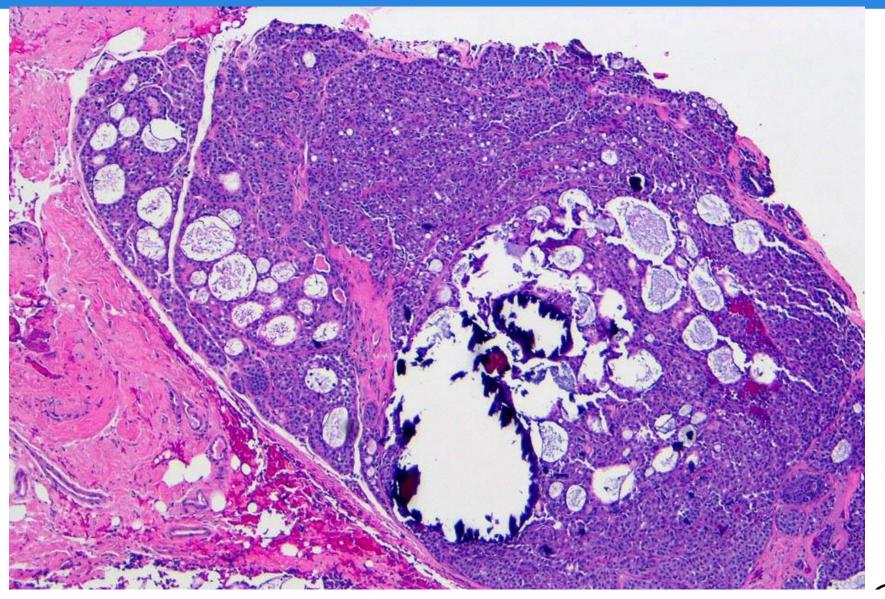
normal acini Luminal cells + myoepith cells 2 cell morphologies

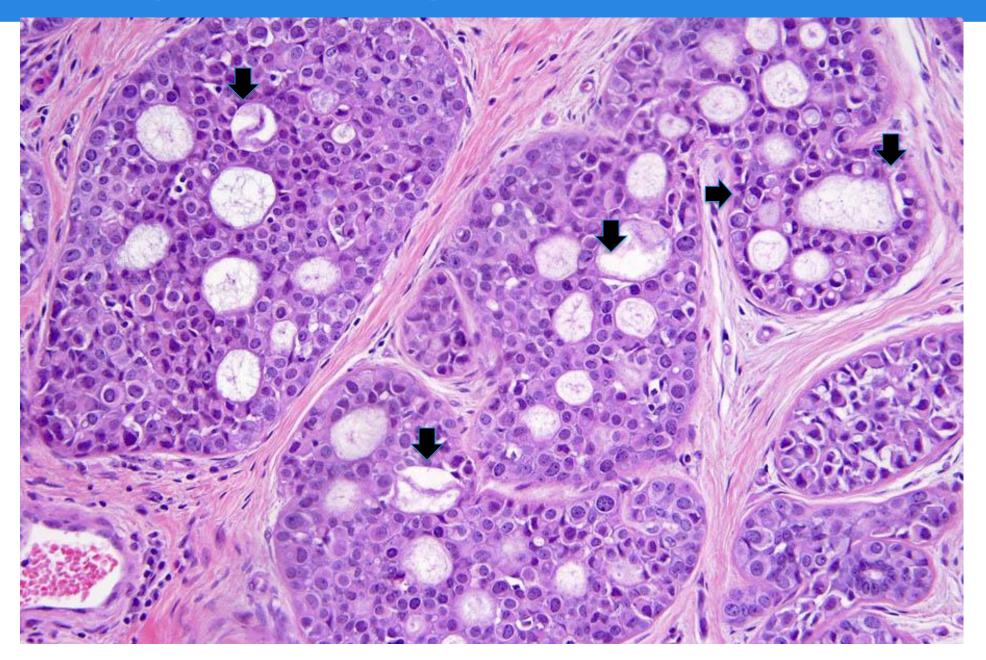

Classic LN Involving Usual Ductal Hyperplasia

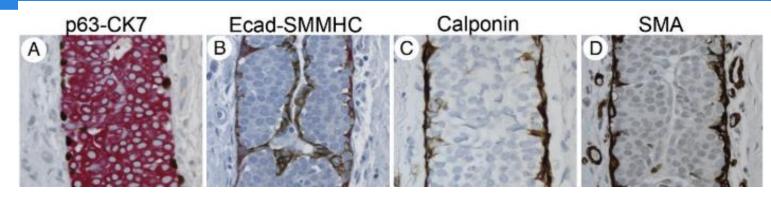


Memorial Sloan Kettering Cancer Center

Collagenous Spherulosis (CS)


- Globoid deposits of eosinophilic or myxoid extracellular matrix surrounded by basement membrane and myoepithelium Clement P et al, AJSP 1987
- Common in sclerosing lesions
- Can be mass-forming (1-3 mm) or harbor Ca²⁺ → mammographic detection
 Resetkova E et al, AJSP 2006

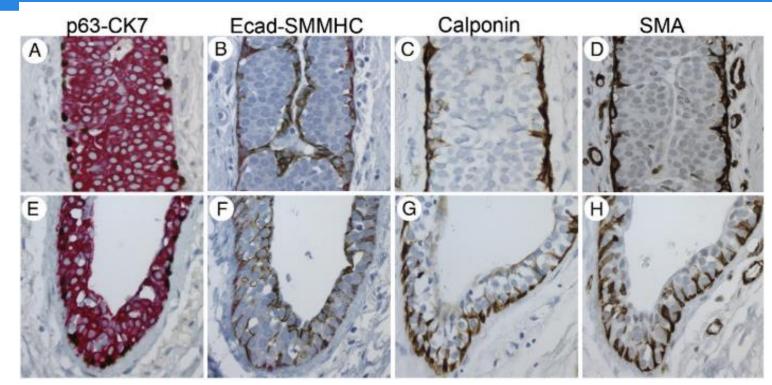

Classic lobular neoplasia in CS may mimic low grade DCIS


CNB imaging target often consists of Ca2+

First described by Sgroi D and Koerner F, AJSP 1995

Lobular neoplasia in CS may mimic DCIS

Myoepithelium and LCIS: 3 patterns


Normal MECs lie flat on BM

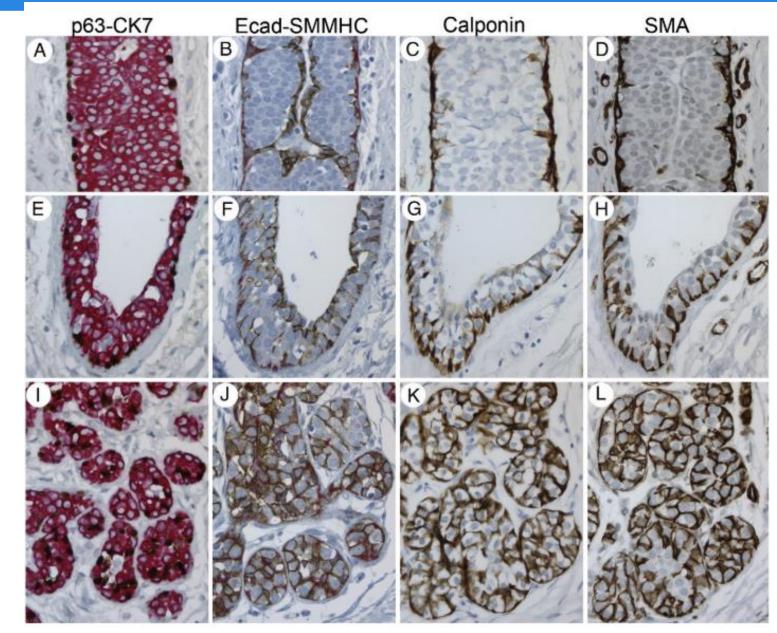
Wang Y et al *Hum Pathol* 55,126-134, 2016

Myoepithelium and LCIS: 3 patterns

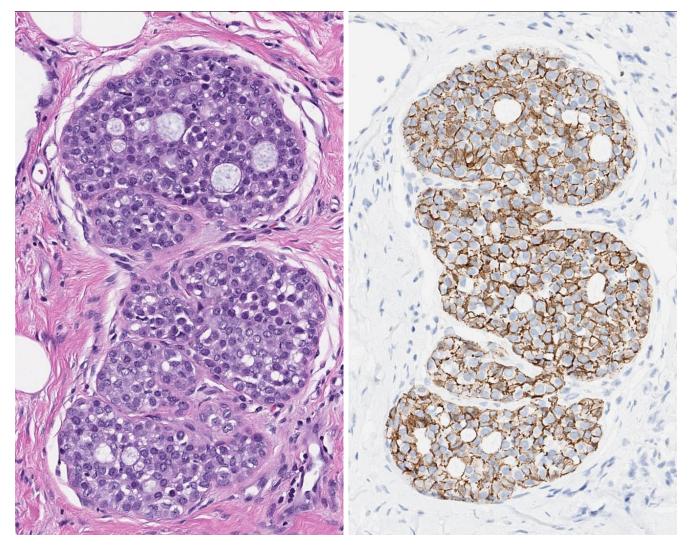
Normal MECs lie flat on BM

Perpendicular MECs perpendicular to BM (some Pagetoid growth)

Wang Y et al *Hum Pathol* 55,126-134, 2016

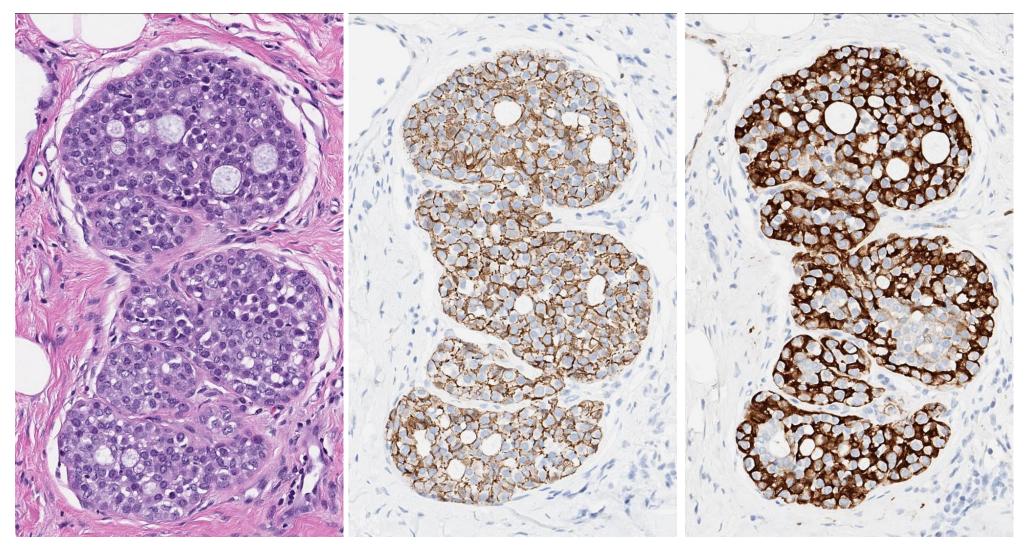

Myoepithelium and LCIS: 3 patterns

Normal MECs lie flat on BM


Perpendicular MECs perpendicular to BM (some Pagetoid growth)

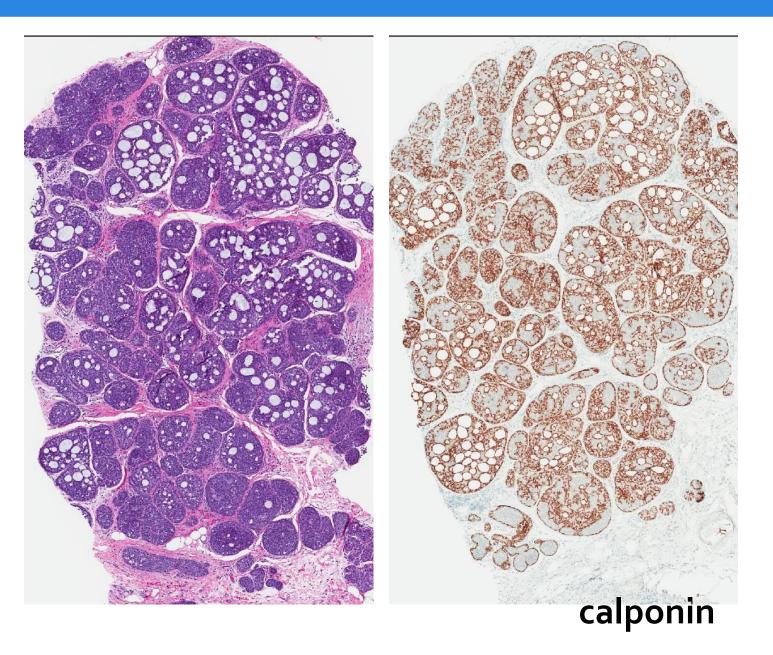
Central MECs interdigitate with LCIS in the center of the acini

Wang Y et al *Hum Pathol* 55,126-134, 2016



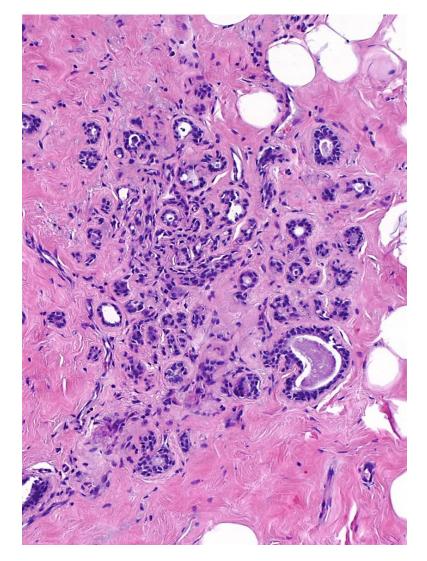
MECs are E-cadherin(+)

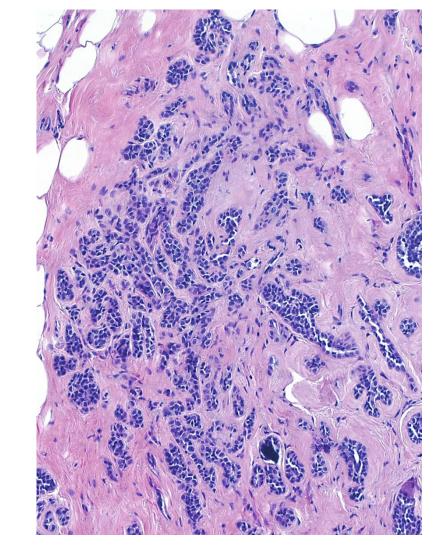
E-cadherin


MECs are E-cadherin(+)

E-cadherin

calponin

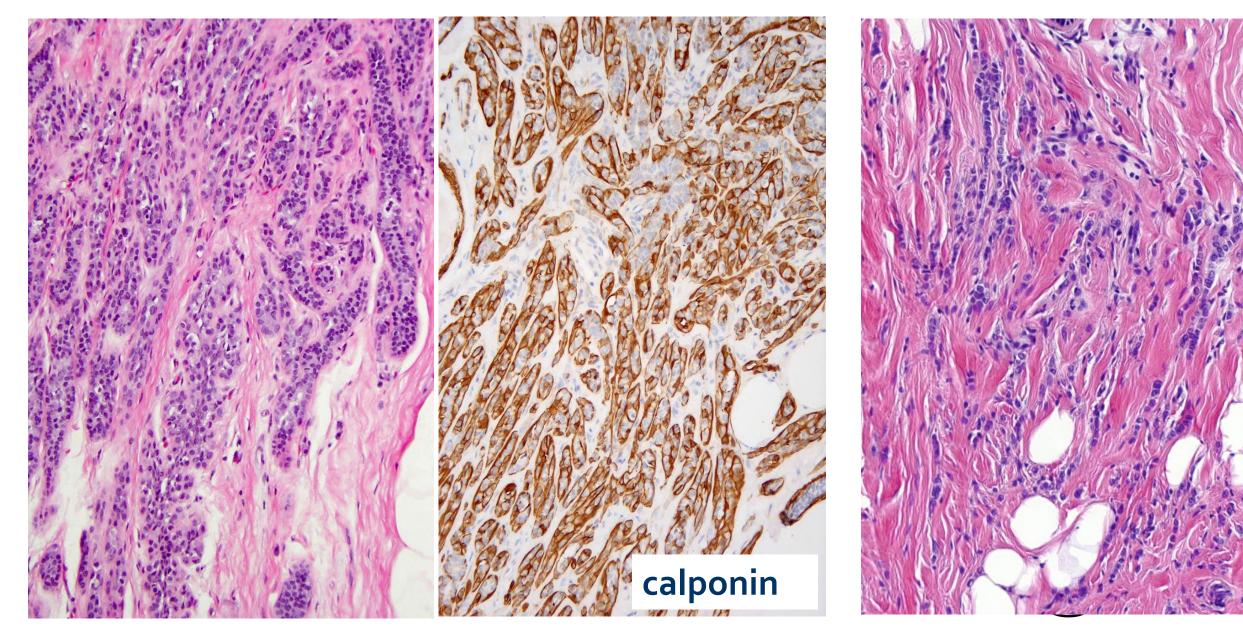

Classic lobular neoplasia in CS may mimic low grade DCIS



Memorial Sloan Kettering Cancer Center

Sclerosing Adenosis (SA) and classic LN

ALH in sclerosing adenosis


Memorial Sloan Kettering Cancer Center

sclerosing adenosis

Classic LN in sclerosing adenosis

Invasive lobular

carcinoma

WHO Classification of Breast Tumors (2019) 5th ed.

Epithelial Tumours of the Breast

- 1. Benign epithelial proliferations and precursors
- 2. Adenosis and benign sclerosing lesion
- 3. Adenomas
- 4. Epithelial-myoepithelial tumors
- 5. Papillary neoplasms

6. Non-invasive lobular neoplasia

- 7. DCIS
- 8. Invasive Breast Carcinoma
- 9. Rare and salivary gland-type tumors
- 10. Neuroendocrine neoplasms

Atypical Lobular Hyperplasia (ALH)

Lobular Carcinoma In situ (LCIS)

- Classic LCIS
- Florid LCIS
- Pleomorphic LCIS

BR5th

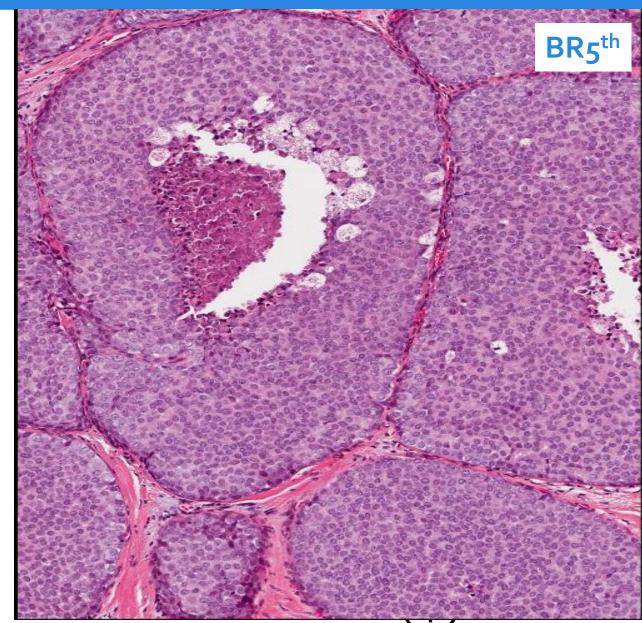
BR 5th ed: Florid LCIS - Definition

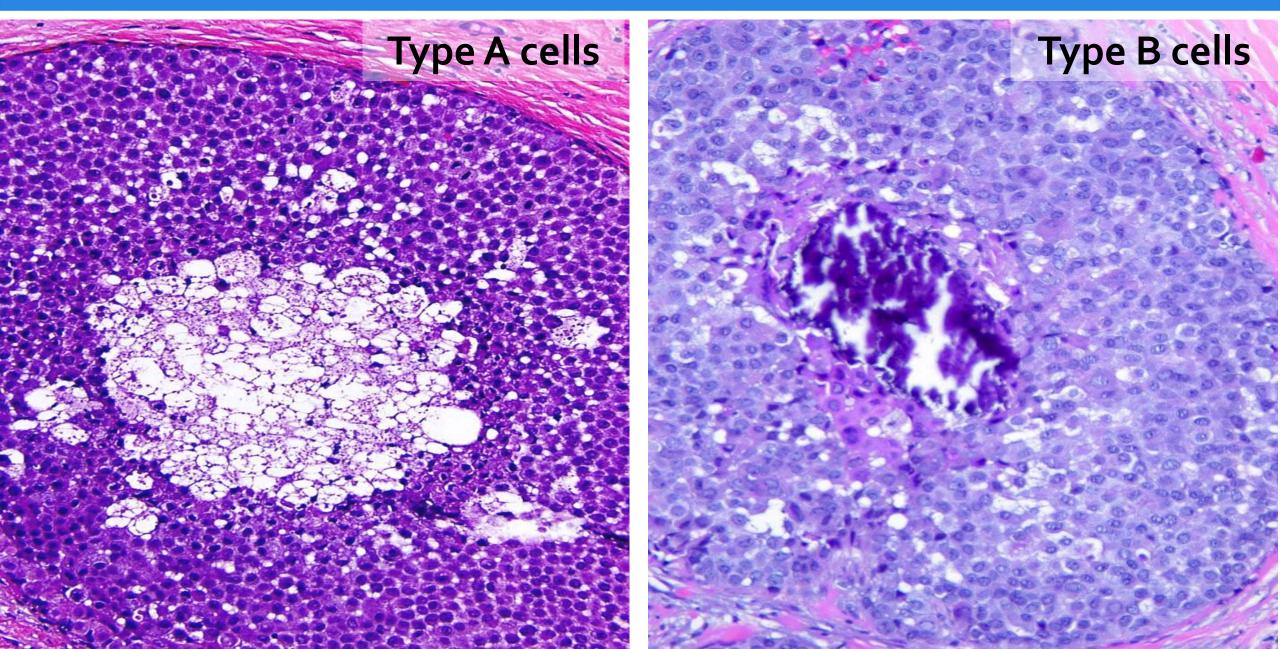
The LCIS cells show the <u>cytological features of classic LCIS</u>, but there is <u>marked distention of TDLUs</u> or ducts, creating a confluent mass-like architecture.

- Florid LCIS should have at least one of two ARCHITECTURAL features:
 - little to no intervening stroma between markedly distended acini of involved TDLUs and a
 - size cut-off point at which an <u>expanded acinus or duct fills an area equivalent to ~40–50 cells</u>
 <u>in diameter</u>

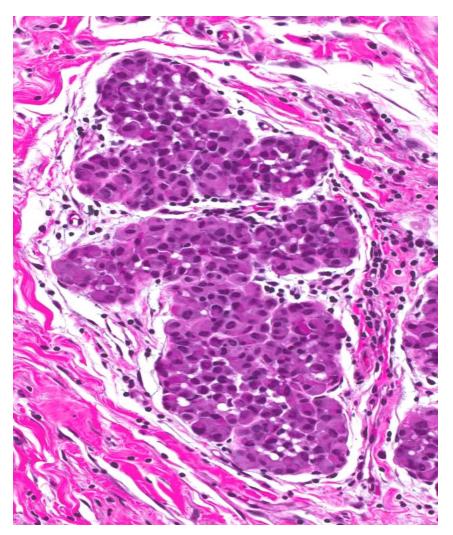
Alvarado-Cabrero I Arch Med Res 41(6):436-41. 2010. Shamir ER Am J Surg Pathol 43(3):399-408, 2019 Shin SJ Hum Pathol 44(10):1998-2009, 2013. Wen HY and Brogi E Surg Pathol Clin 11(1):123-145, 2018 (review)

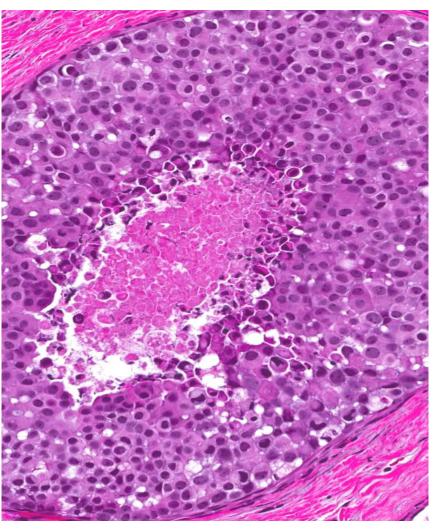
BR 5th ed: Florid LCIS


Florid LCIS has cytological features similar to those of classic LCIS (type A and/or type B cells) but is distinguished by marked expansion of TDLUs with little to no intervening stroma between markedly distended acini of involved TDLUs.


BR 5th ed: Florid LCIS definition

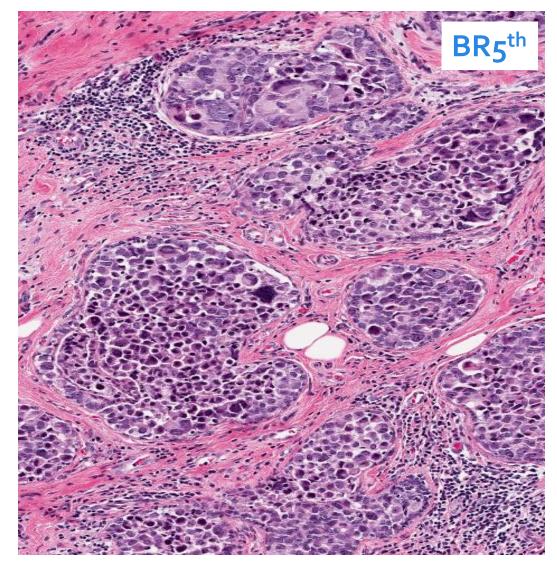
In florid LCIS, the acini or ducts are markedly expanded (filling at least one high power field, equivalent to >40–50 cells in diameter) and often associated with central necrosis.


Necrosis and/or Ca²⁺ NOT required for diagnosis of Florid LCIS

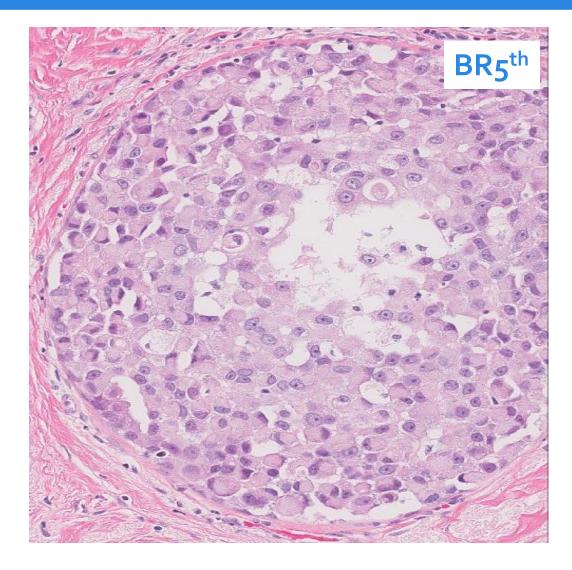


Florid LCIS

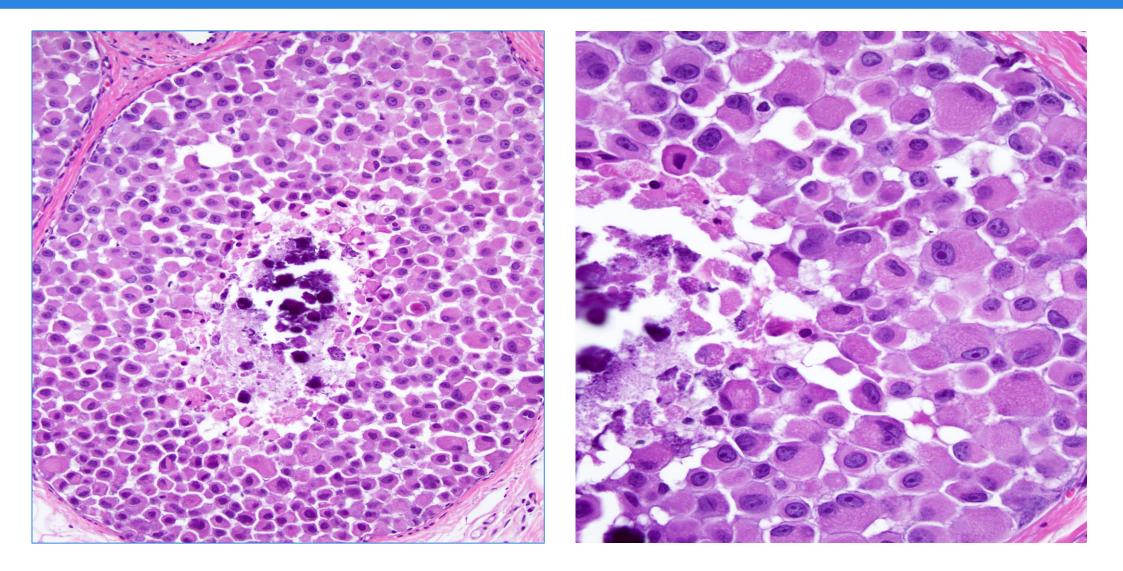
Florid LCIS Classic LCIS cytomorphology, exaggerated architecture



classic LCIS *florid* LCIS (two images of the same case, same magnification)

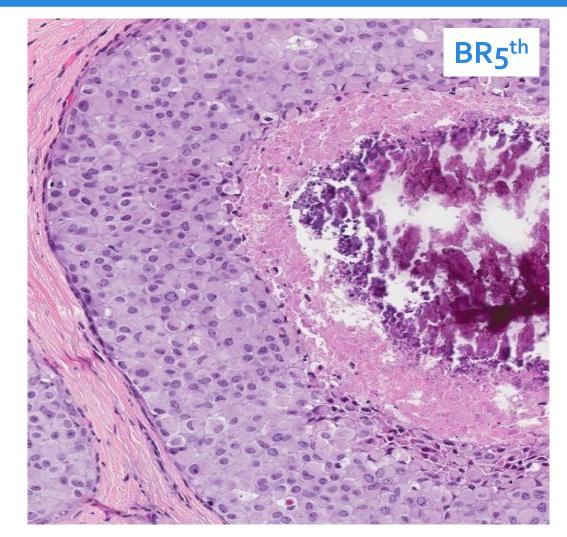

BR 5th ed: Pleomorphic LCIS – definition

- Pleomorphic LCIS is composed of larger cells with marked nuclear pleomorphism,
- (some nuclei) are >4 times (the size) of lymphocytes
- nuclei equivalent to those of high-grade DCIS, with or without apocrine features

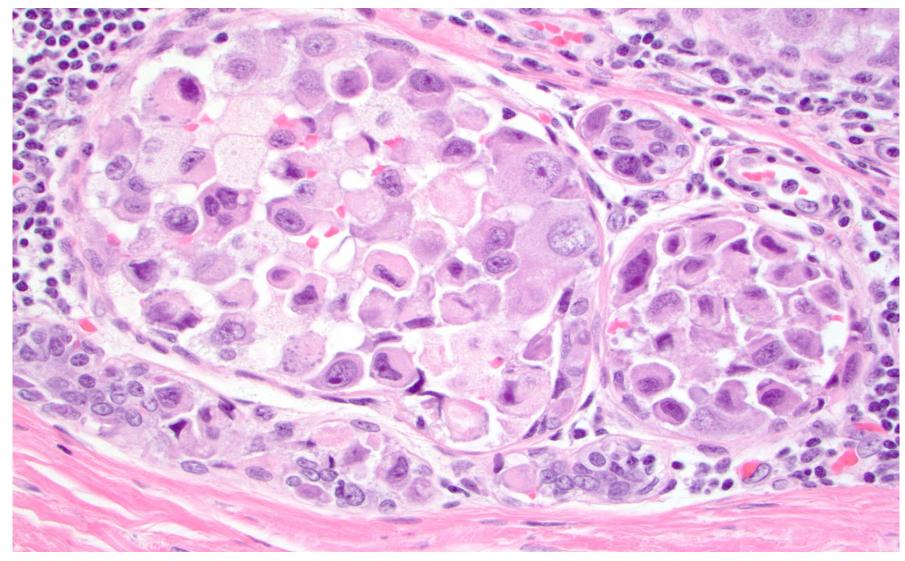

BR 5th ed: Pleomorphic LCIS, apocrine type

A subset of pleomorphic LCIS is further categorized as apocrine type, based on large cells with abundant eosinophilic granular cytoplasm and round to oval nuclei containing prominent nucleoli.

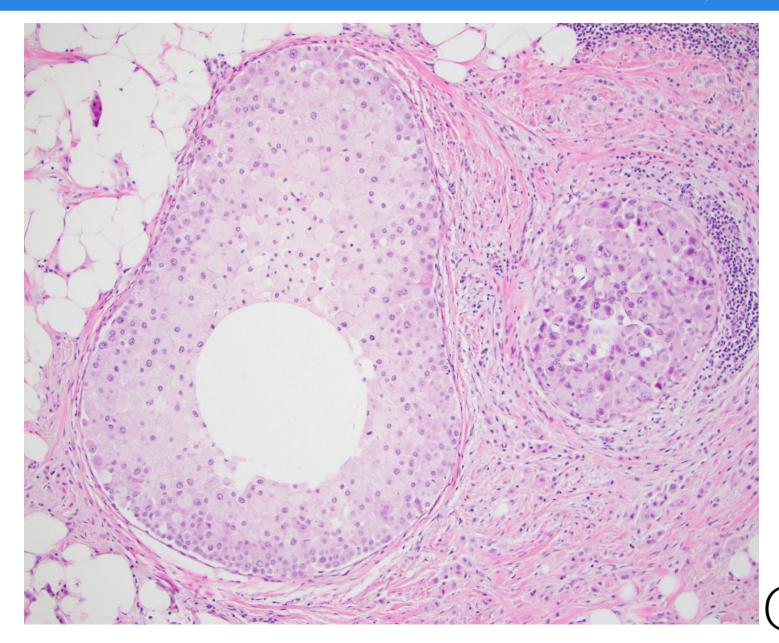
Pleomorphic LCIS Apocrine Type



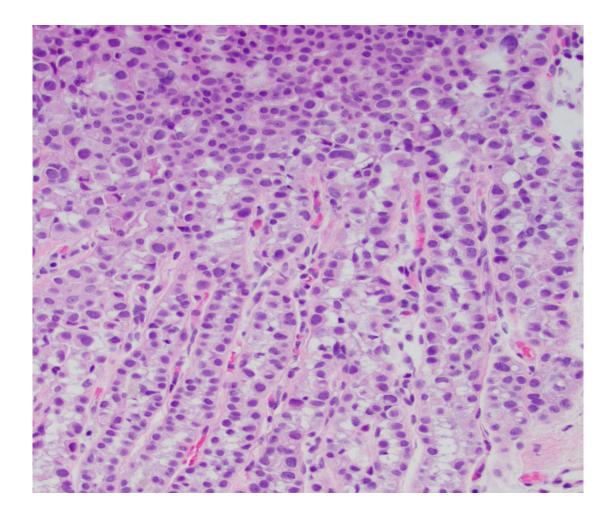
BR 5th ed: Pleomorphic LCIS


Pleomorphic LCIS is often associated with comedo necrosis and calcifications, leading to mammographic detection.

Necrosis and/or Ca²⁺ NOT required for diagnosis of Pleomorphic LCIS



P-LCIS: acinar expansion may be less conspicuous than in F-


Florid LCIS and Pleomorphic LCIS may coexist

Memorial Sloan Kettering Cancer Center

Ŧ

BR 5th ed: mix of type B + pleomorphic cells \rightarrow classic LCIS

- LCIS lesions that are borderline between classic LCIS composed of type B cells and pleomorphic LCIS should be categorized as classic LCIS composed of type B cells.
- *Guideline very useful for excision specimens*
- Is it also applicable to CNBs? limited data

4 rad-path concordant CNBs \rightarrow no upgrade

Kuba MG et al. *Mod Pathol*. 2021 Aug;34(8):1495-1506.

P-LCIS and F-LCIS – clinical presentation

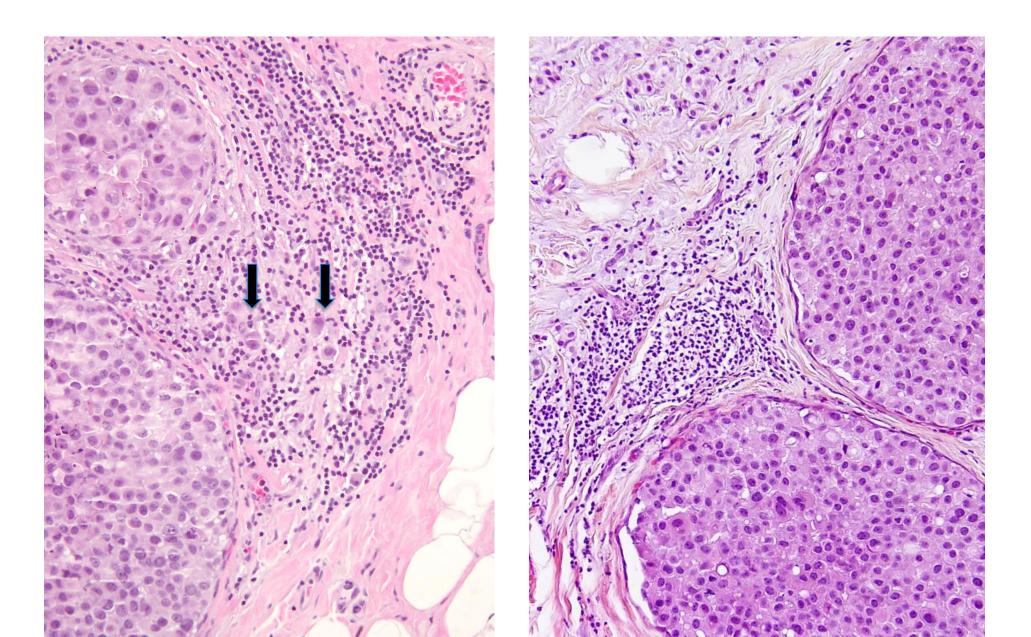
- mammographic Ca²⁺ about 80% of cases
- mass lesion +/- Ca²⁺

Sneige, *Mod Pathol* 2002;15:1044 50 Fadare, *Am J Surg Pathol* 2006;30:1445-53 Sapino, *Virchows Arch* 2000; 436:421-30 Chen *Am J Surg Pathol* 2009;33:1683-94 Shin, *Human Pathol* 2013;44:1998-2009 Flanagan, *Ann Surg Oncol* 2015;22:4263-9 Khoury, *Histopathology* 2014, 64:981-993 Susnik B et al. 2016, Fasola, *Breast J* 2017 DeBrot, *Breast Cancer Res Treat*, 2017,165:411-420 Foschini MP et al *Am J Surg Pathol* 2019 Harrison B, *Mod Pathol* 2020;33(7):1287-1297 Shamir E, *Mod Pathol* 2020;33:1078–1091 Kuba MG et al. *Mod Pathol*. 2021 Aug;34(8):1495-1506.

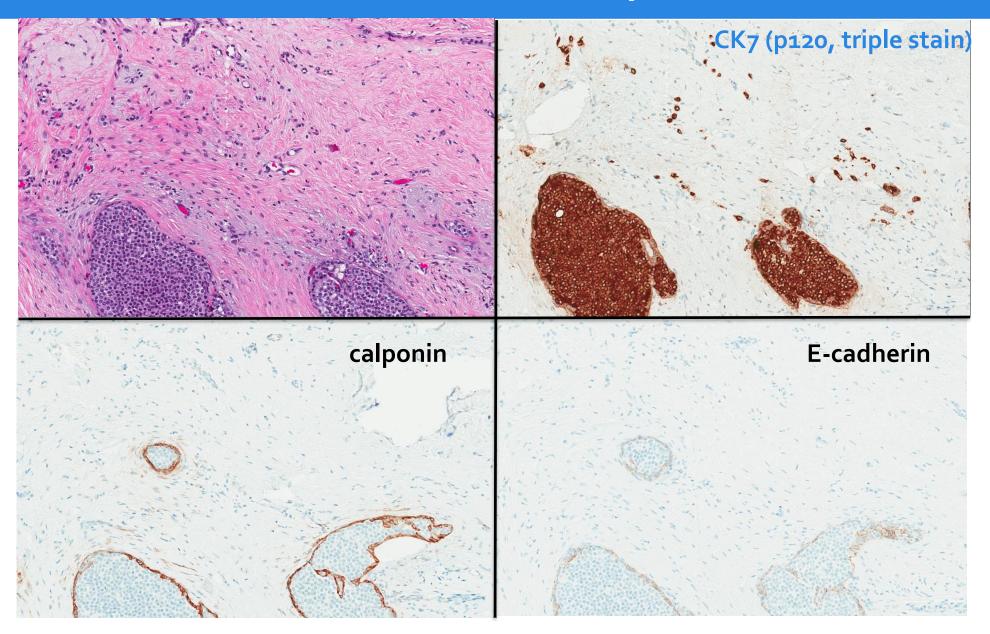
- Often associated with invasive carcinoma
 - 4/10 (40%) cases
 - Sapino, *Virchows Arch* 2000; 436:421-30
 - 10/24 (42%) cases

Sneige, *Mod Pathol* 2002;15:1044-50

— 12/18 (67%) cases including 10 ILCs


Fadare, Am J Surg Pathol 2006;30:1445-53

— 47/78 (60%) cases 44 ILCs


Fasola, Breast J. 2018;24:66-69

- 62/85 (73%) cases including 27 P-ILCs and 19 ILC Shamir E, *Mod Pathol* 2020;33:1078–1091

Microinvasive Lobular Carcinoma: use "positive" IHC

Non-invasive lobular neoplasia

ALH	CLASSIC LCIS	F-LCIS*	P-LCIS*
	Type A cells and/or Type B cells	Type A cells and/or Type B cells	Pleomorphic nuclei

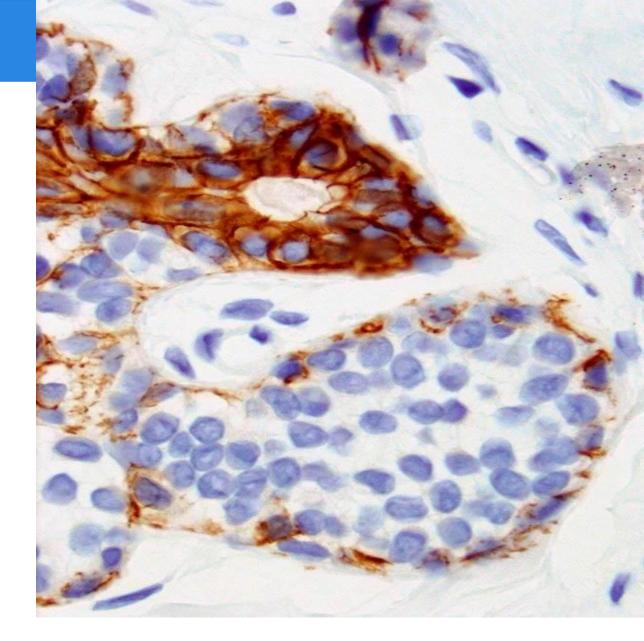
*molecular alterations support lobular genotype, with higher number of

genomic alterations

Palacios, J et al. Mod Pathol, 2003
Simpson PT et al. J Pathol, 2008
Reis-Filho JS et al. J Pathol, 2008
Chen YY et al. Am J Surg Pathol. 2009

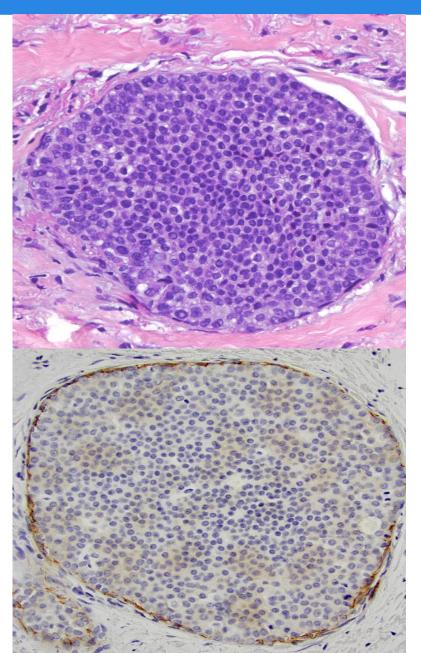
Bolt V et al. Gene Chromosomes Cancer 2010
Shin, *Human Pathol* 2013
Shamir, Am J Surg Pathol 2019
Harrison, Mod Pathol 2020

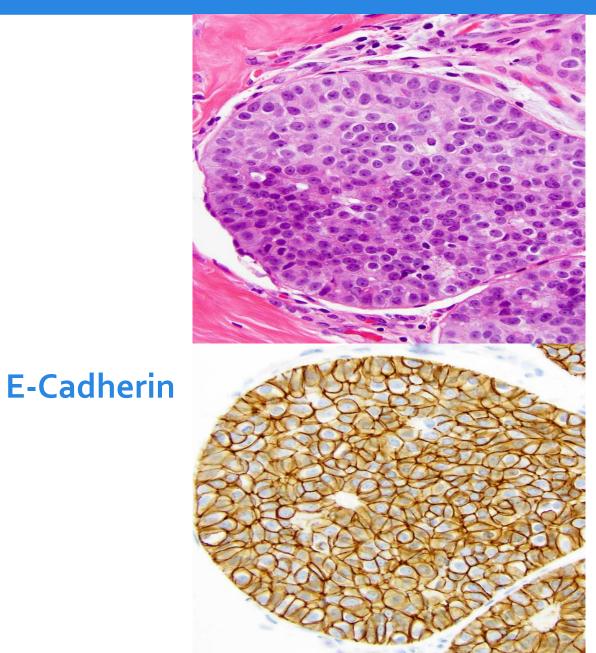
E-CADHERIN

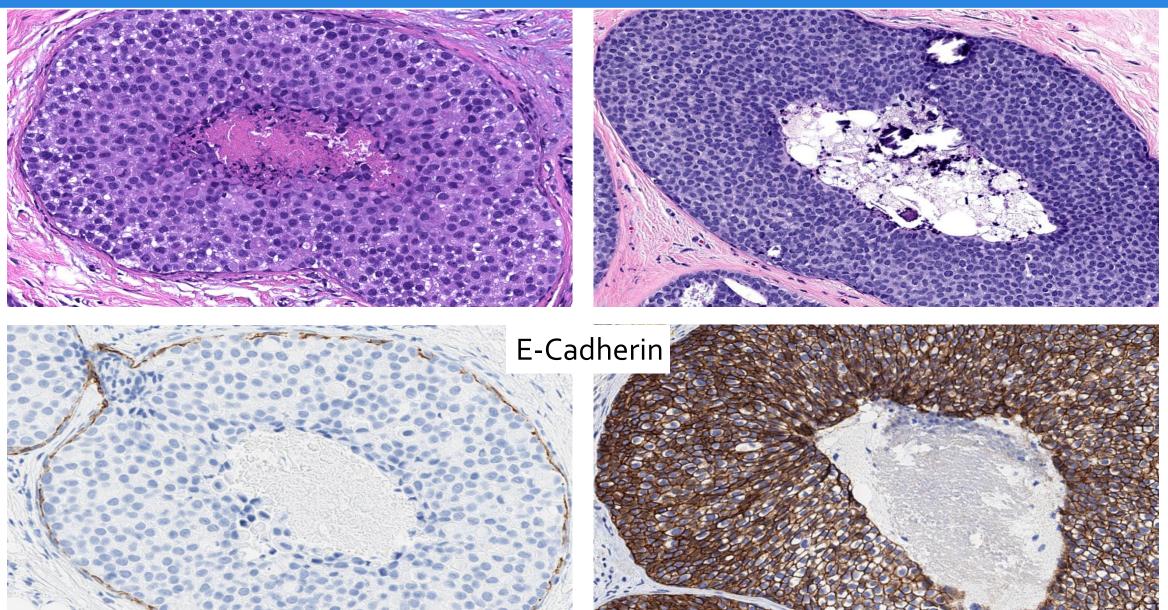

transmembrane glycoprotein involved in cellto-cell adhesion *CDH1* on chromosome 16q22.1

Ductal epithelium: (+) cell membrane; continuous linear stain

Myoepithelium: (+) cell membrane facing the epithelium; "dot-like"/granular linear stain


Lobular neoplasia: loss of E-cadherin

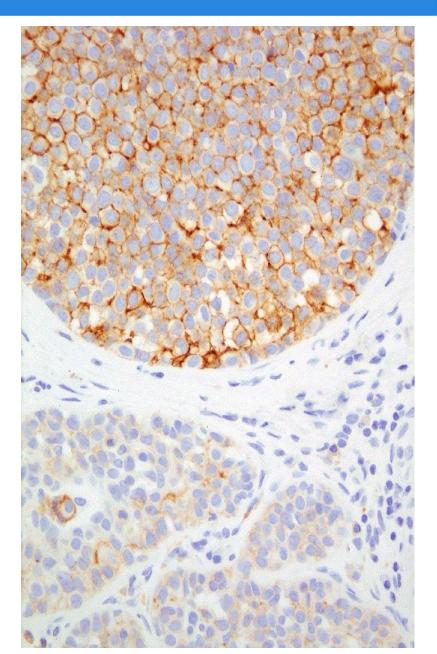

Endothelium may be weakly positive



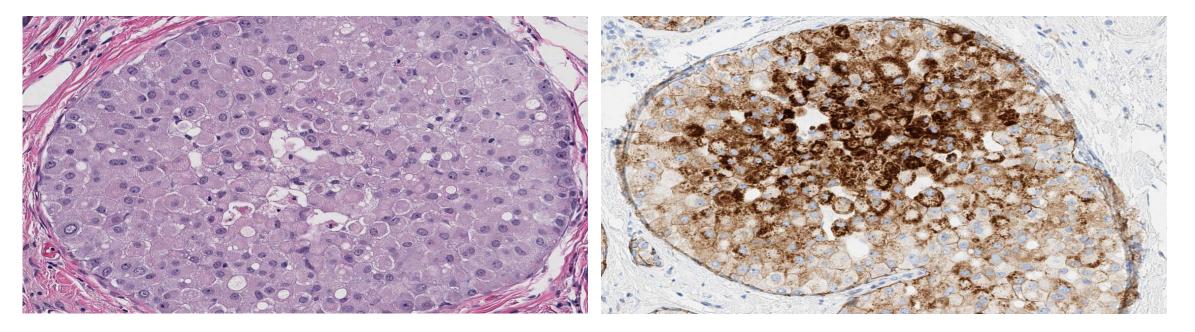
Classic LCIS VS Low Grade DCIS

F-LCIS and P-LCIS vs Solid DCIS

Aberrant expression of E-Cadherin in ILC and LCIS

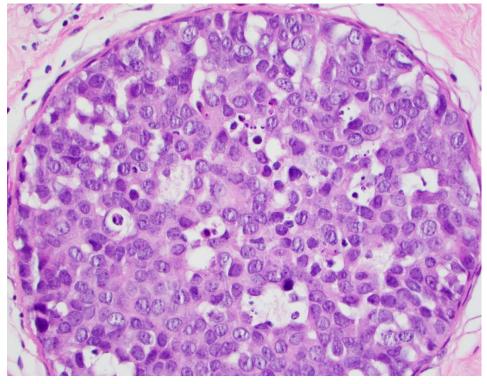

• E-cadherin expression retained in some invasive lobular carcinomas (ILCs)

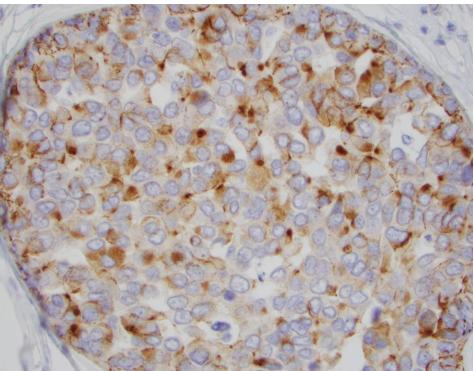
Da Silva L. et al, *Am J Surg Pathol* 2008 32(5):773-83

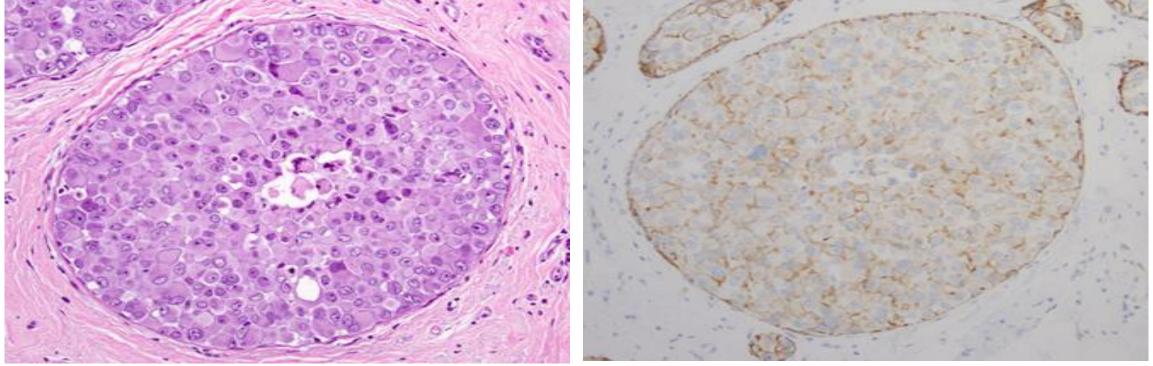

E-cadherin expression in ILCs correlates with CDH1 somatic alterations

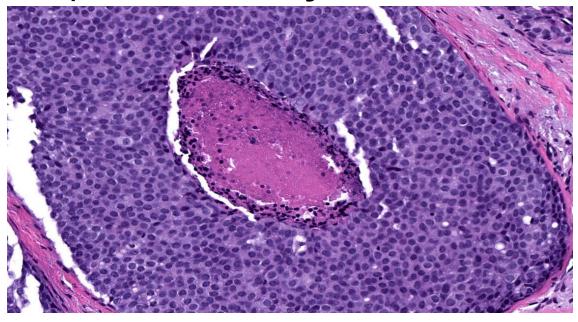
Grabenstetter A. et al. Hum Pathol 2020 Aug;102:44-5

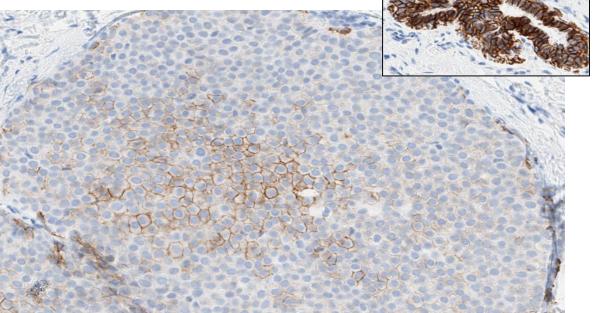
Possible pitfall: LCIS with aberrant E-cadherin expression misdiagnosed as DCIS

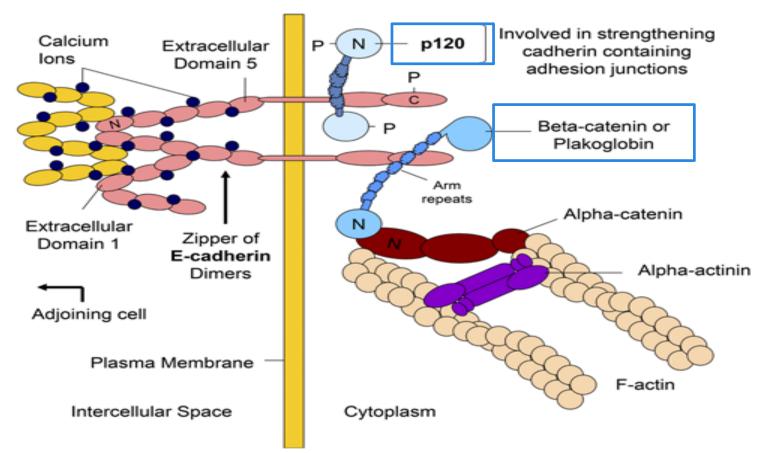



• Granular cytoplasmic staining


• Punctate/Golgi apparatus distribution




Partial, fragmented, granular, membrane stain

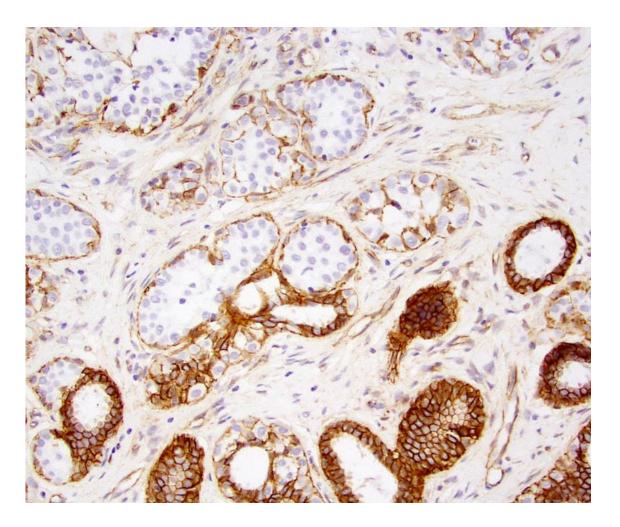

 Circumferential membrane stain, but with reduced intensity compared with adjacent ductal cells

E-cadherin and wnt-related proteins

E-cadherin intracytoplasmic domain *binds* p120/ beta-catenin *binds* actin cytoskeleton

Dabbs AJ et al. AJSP 2013;37:e1-e11

β -catenin

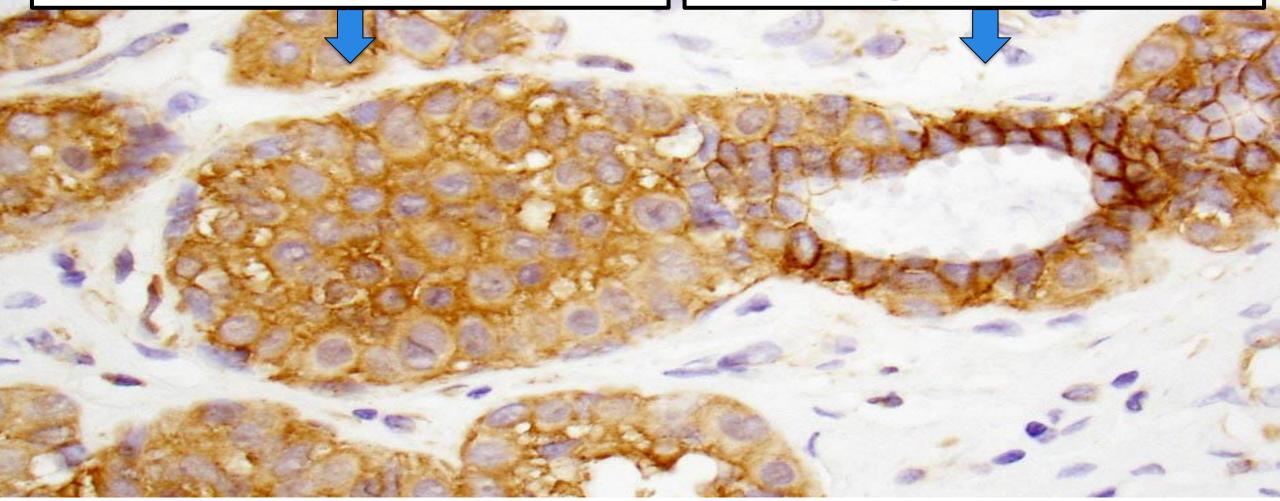

Loss in lobular neoplasia

Ductal epithelium: (+) cell membrane; continuous linear stain

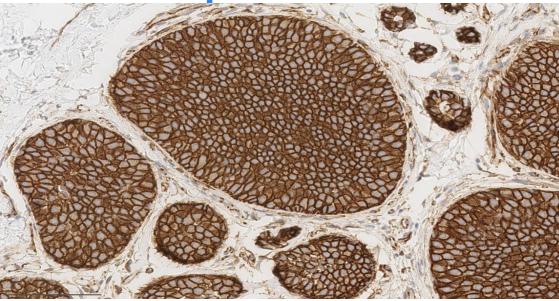
Myoepithelium: (+)cell membrane facing the epithelium; "dot-like"/granular linear stain

Endothelium may be weakly positive

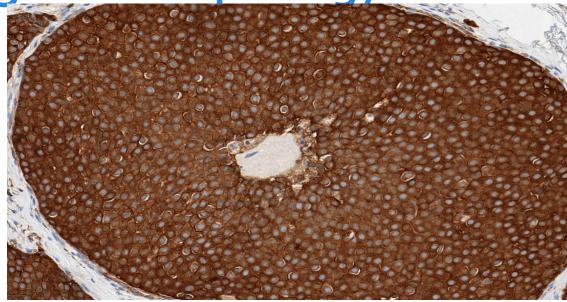
De Leeuw WJ et al. J Pathol. 1997 Dec;183(4):404-11 Dabbs AJ et al. *AJSP* 2013;37:e1-e11



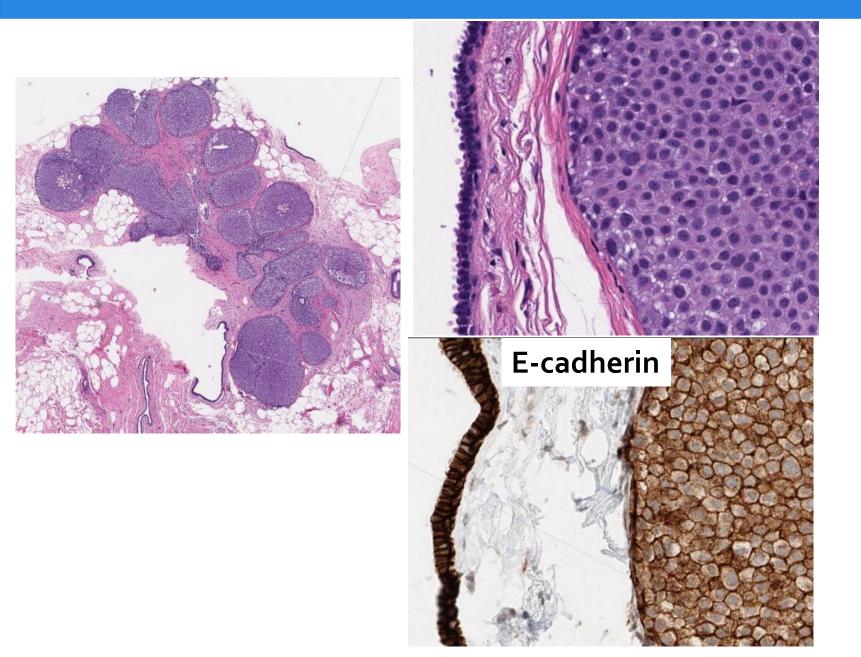
P120


Diffuse cytoplasmic staining in lobular neoplasia

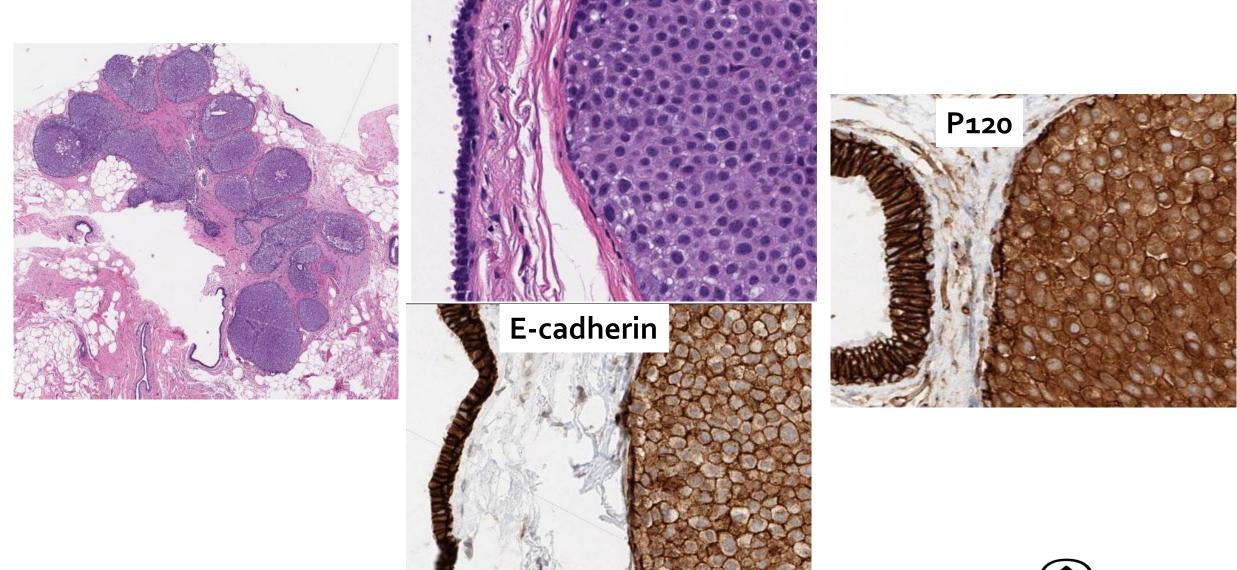
Linear membrane staining in ductal cells



useful to evaluate solid intraductal epithelial proliferations with ambiguous morphology


• DCIS: (+) cell membrane stain

• LCIS: (+) cytoplasmic stain



Aberrant E-cadherin in Florid (or Pleomorphic) LCIS: utility of p120

Aberrant E-cadherin in Florid (or Pleomorphic) LCIS: utility of p120

Memorial Sloan Kettering Cancer Center

IHC in the DDX of Lobular vs Ductal epithelial proliferations

Antigen	Pattern of Staining			
	Ductal epithelium	Lobular Neoplasia	Myoepithelium	
E-cadherin	continuous linear cell membrane (+)	absent (aberrant staining of cell membrane, weak linear)	granular/ beaded stain with	
β-catenin	continuous linear cell membrane (+)	absent	linear distribution limited to the cell membrane facing the epithelium	
P120*	continuous linear cell membrane (+)	cytoplasm diffusely (+) cell membrane (-)		

***p120:** Most useful marker in cases with aberrant E-cadherin Useful in the detection of microinvasive lobular carcinoma (microILC)

Memorial Sloan Kettering Cancer Center

Core Needle Biopsy ALH and Classic LCIS Florid LCIS and Pleomorphic LCIS

Range of upgrade rates and management

Rad-Path concordant ALH/classic LCIS @CBX: upgrade @EXC

Author year	Cases w/ EXC	Invasive	DCIS	Upgrades (%)
Rendi 2012	68	0	2	2(2.9%)*
Niell 2012	60	4 (3 ILC, 1IDC)	3	7(11%)
Zhao 2012	237	4 (2 ILC, 2 TC)	7	11 (4.6%)
Shah-Khan 2012	91	1	0	1 (1%)*
Atkins 2013	38	0	0	Ο
Murray 2013	72	1	1	2 (3%)
D'Alfonso 2013	53	1	2	3(5.6%)*
Nakhlis 2016	74	0	1	1(1%)
Susnik 2016	180	3 (2 ILC, 1 IDC)	4	7 (3.9%)
Sen 2016	442	8 (6 ILC, 2 TC)	9	17 (3.8%)*
Holbrook 2018	55	0	Ο	Ο
Total	1370	22 (1.6%)	29 (2.1%)	51 (3.7%)

Rad-Path concordant ALH/classic LCIS @CBX: upgrade @EXC

Author year	Cases w/ EXC	Invasive	DCIS	Upgrades (%)
Rendi 2012	68	0	2	2(2.9%)*
Niell 2012	60	4 (3 ILC, 1IDC)	3	7(11%)
Zhao 2012	237	4 (2 ILC, 2 TC)	7	11 (4.6%)
Shah-Khan 2012	91	1	Ο	1 (1%)*
Atkins 2013	38	Ο	0	О
Murray 2013	72	1	1	2 (3%)
D'Alfonso 2013	53	1	2	3(5.6%)*
Nakhlis 2016	74	Ο	1	1(1%)
Susnik 2016	180	3 (2 ILC, 1 IDC)	4	7 (3.9%)
Sen 2016	442	8 (6 ILC, 2 TC)	9	17 (3.8%)*
Holbrook 2018	55	Ο	О	О
Total	1370	22 (1.6%)	29 (2.1%)	51 (3.7%)

Rad-Path concordant ALH/classic LCIS @CBX: upgrade @EXC

Author year	Cases w/ EXC	Invasive	DCIS	Upgrades (%)
Rendi 2012	68	О	2	2(2.9%)
Niell 2012	60	4 (3 ILC, 1IDC)	3	7(11%)
Zhao 2012	237	4 (2 ILC, 2 TC)	7	11 (4.6%)
Shah-Khan 2012	91	1	О	ı (1%)*
Atkins 2013	38	О	О	О
Murray 2013	72	1	1	2 (3%)
D'Alfonso 2013	53	1	2	3(5.6%)*
Nakhlis 2016	74	о	1	1(1%)
Susnik 2016	180	3 (2 ILC, 1 IDC)	4	7 (3.9%)
Sen 2016	442	8 (6 ILC, 2 TC)	9	17 (3.8%)*
Holbrook 2018	55	О	О	О
Total	1370	22 (1.6%)	29 (2.1%)	51 (3.7%)

USA + Canada

If *classic* LCIS/ ALH is the highest risk lesion in a <u>rad-path</u> <u>concordant CNB</u>, surgical excision can be *safely* spared if the patient can be followed with imaging studies

Excision is warranted if

- Radiologic-pathologic findings are discordant AND/OR
- Another lesion is present which by itself mandates excision (e.g. ADH)

CNB Dx of P-LCIS/ F-LCIS mandates surgical excision

Table 2 Upgrade rates at excision of florid LCIS and pleomorphic LCIS in CNBs

Author, Year	Core biopsy		Carcinoma in ex	Carcinoma in excision			Upgrade rate (%)
	Diagnosis	n	DCIS	Invasive	Any carcinoma/ all cases	%	
Chivukula, 2008 [68]	P-LCIS	12	0	3 ILC	3/12	25	
Carder, 2010 [70]	P-LCIS	10	0	1 mIC; 2 ILC	3/10	30	
Sullivan, 2010 [58]	F-LCIS	11	1	4 ILC	5/11	45%	Unarade
	P-LCIS	17	2	3 ILC	5/17	29%	opgrade
Niell, 2012 [37]	P-LCIS	4	1	2 ILC; 1 IDC	4/4	100	Upgrade rate <u>></u> 17%
D'Alfonso, 2013 [39]	F-LCIS	8	0	1 mIC; 1 ILC	2/8	25	in all series
Flanagan, 2015 [63]	P-LCIS	17	3	5 ILC; 1 IC	9/17	53	
Susnik, 2016 [40]	P-LCIS	15	0	4 IC	4/15	27	
Fasola, 2018 [62]	P-LCIS	20	2	4 ILC	6/20	30	
Guo, 2018 [69]	P-LCIS	25	0	2 mIC; 13 ILC; 1 IDC	16/25	64	
Desai, 2018 [66]	P-LCIS	15	0	3 IC	3/15	20	
Nakhlis, 2019 [67]	Variant LCIS	76	10	9 ILC; 5 IDC; 3 IC	27/76	36%	
Shamir, 2019 [53]	P-LCIS	8	0	2 ILC; 1 P-ILC	3/8	38	
	F-LCIS	6	1	1 ILC	2/6	33	
Foschini, 2019 [57]	F/P-LCIS	70	3	28 IC	31/70	44	
Harrison, 2020 [76]	P-LCIS	17	1	5 ILC	6/17	35	
	ELCIE	2	1	Û	1/2	50	
Kuba, 2021 (55)	P-LCIS	8	0	1 ILC; 1 mIC	2/8	25	
	F-LCIS	24	0	3 mIC; 1 ILC	4/24	17	

CNB: Core needle biopsy; DCIS; ductal carcinoma in situ; P-LCIS: pleomorphic lobular carcinoma in situ; F-LCIS: florid lobular carcinoma in situ; F/P-LCIS: florid/pleomorphic lobular carcinoma in situ; ILC: invasive lobular carcinoma: IDC: invasive ductal carcinoma: IC: invasive carcinoma: mIC: microinvasive carcinoma: P-ILC: pleomorphic invasive lobular carcinoma

Memorial Sloan Kettering Cancer Center

Brogi E. Virchows Arch. 2022 May 14. Epub ahead of print. PMID: 35567633.

European perspective on the management of LCIS (all morphologies)

Table 5 Summary of the recen		Broad range of upgrade			
Author and year Number of patients analyzed or type of publica if no patients have been analyzed (e.g., review comment)		Findings	Conclusions	rates at EXC: 2% - 46%	
Calhoun et al. 2016 [50]	n=76 on CNB Upgrade after 15 years follow-up	10 cases (13%) with upgrade	The extent of LN in CNB may be an indicator of the likelihood of upgrade to carcinoma		
Donaldson et al. 2018 [15]	n=393 on CNB with ADH/LN Upgrade rate and follow-up (87 months)	Upgrade in <i>n</i> = 181 (46%) The 7-year cumulative breast cancer incidence was 9.9%	Multiple foci do not influence BC development Close clinical and radiologic follow-up for more than 5 years in this patient population	Upgrade rates	
Fives et al. 2016 [51]	n=25 LN on CNB accompanying fibroadenomas	Upgrade in 1 case (5%)	Rare upgrade	Classic LN: 2.4%- 10.4%	
King et al. 2015 [40]	n = 1004 with /wo chemoprevention	10-Year cumulative risk 7% With chemoprevention	Chemoprevention reduced BC risk Volume of disease, (ratio of slides with LCIS to total		
	Median follow-up 81 months	21% (3.2% per year) with no chemoprevention	volume of disease, (ratio of shdes with LCIS to total number of slides) was associated with breast cancer development (p = 0.008)	Non-classic LCIS: >20%	
Mao et al. 2017 [52]	BC risk in LN -Hormone receptor status -Skin color		LN was higher in HR positive and in black patients		
Maxwell et al. 2016 [53]	<i>n</i> = 392 pure LN 326 with OE	Upgrade to pleomorphic LN In 23/326 cases (7%)	Screen detected LN -In younger women -Unilateral -Non-pleomorphic		
Nakhlis et al. 2016 [54]	n = 77 on CNB	Upgrade in 2 of 77 cases (2%)	Routine excision is not indicated for patients with pure LN on CB and concordant imaging findings		
Renshaw and Gould, 2016 [4]	n=69 CNB with LN Upgrade Follow-up	Upgrade in 17 of 69 cases (25.8%)	Immediate BC risk is higher for ADH than LN Long-term BC risk is higher for LN than ADH		
Schmidt et al. 2018 [55]	n = 178 on CNB 115 OE 54 Surveillance (55 months follow-up)	Upgrade in 13/115 cases (11%) 1/54 Cases developed BC after follow-up (2%)	Low-upgrade rate and low BC risk		
Sen et al. 2016 [56]	n = 447 (ALH and LCIS)	Upgrade ALH 2.4% Upgrade LCIS 8.4%	Excision is recommended for LCIS on CNB and for ALH surveillance at 6, 12, and 24 months	Rageth C et al Breast Cancer Research and Treatment	
Susnik et al. 2016 [47]	n=302 of 370 Upgrade after OE	Upgrade In 3.5% (8/228) pure LN lesions In 26.7% in "LCIS variants" (4/15) in 28.3% in LN with ductal atypia (15/53)	LN with non-classic morphology or with associated ductal atypia requires surgical excision, this can be avoided in pure LN	(2019) 174:279–296	
Xie et al. 2017 [57]	Survival outcome in SEER database (n=208+5756 cases) Bilateral or partial mastectomy	OS after partial mastectomy without radiotherapy was not inferior to patients who underwent bilat- eral prophylactic mastectomy	Low breast cancer-specific mortality in patients with LCIS, therefore aggressive prophylactic surgery like bilateral prophylactic mastectomy should not be advocated for most patients with LCIS	Memorial Sloan Kettering Cancer Center	

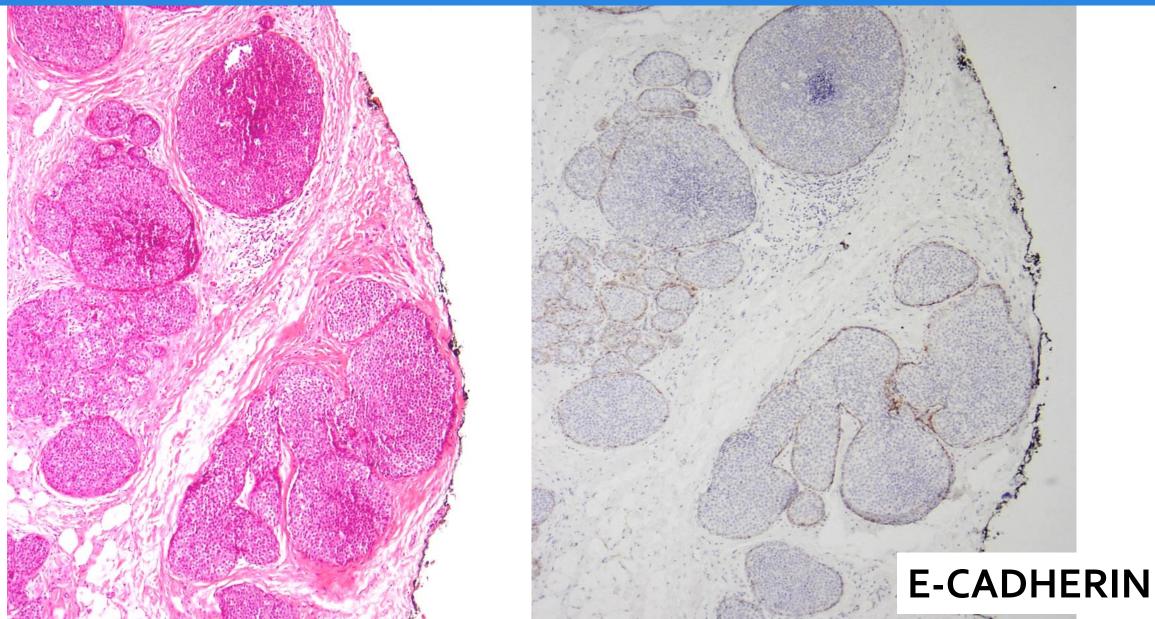
Lobular neoplasia (LN)

Consensus recommendation for management of lobular neoplasia by a European multidisciplinary expert panel

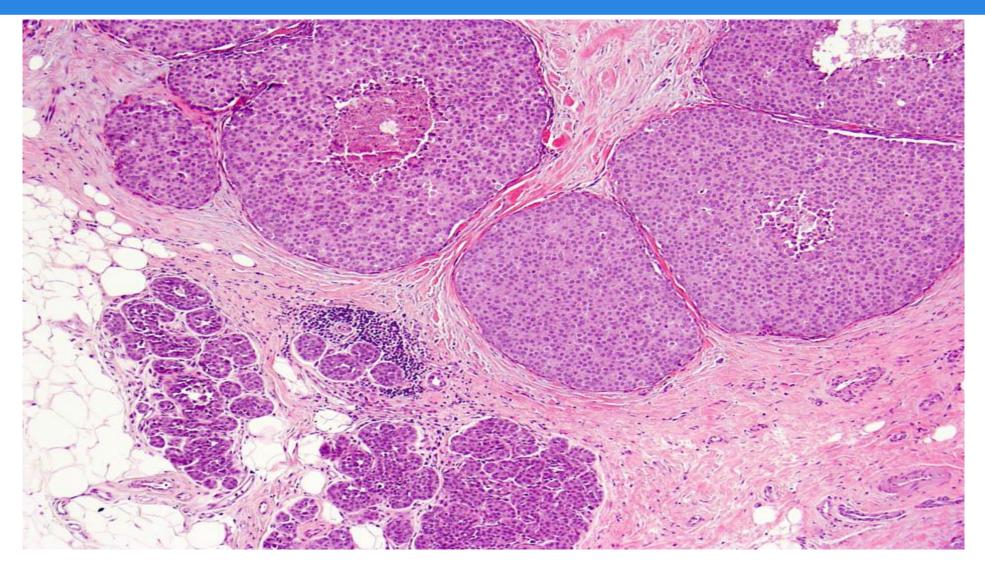
A lesion containing classical LN which is visible on imaging should undergo excision with Vacuum Assisted Biopsy (VAB). Thereafter surveillance is justified if there is no pathological-radiological discordance and no residual lesion.

In contrast, **morphologic variants of LN** (LIN3, pleomorphic LCIS, and florid LCIS) which are reported as B5a lesions **should undergo open excision**

Rageth C et al Breast Cancer Research and Treatment (2019) 174:279–296



CNB diagnosis Societies recommendations	Classic lobular neoplasia (ALH/Classic LCIS)	Pleomorphic LCIS	Florid LCIS	
NCCN ¹ , 2022 (US)	Surgical excision not required if radiologic pathologic concordant	Surgical excision	Not mentioned	
American Society of Breast Surgeons, 2016 (US)	Surgical excision not required if radiologic pathologic concordant	Surgical excision	Surgical excision	
Second International Consensus Conference on B3 lesions, 2018 (Europe)	(Category B3, lesion of uncertain malignant potential) Excision with VAB if visible on imaging; if findings are pathologic- radiologic concordant and no residual lesion then surveillance is appropriate	(Category B5a, malignant in situ) Surgical excision	(Category B5a, malignant in situ) Surgical excision	
ESMO², 2019 (Europe)	Surgical excision not required	Surgical excision	Not mentioned	
AGO ³ , 2019 (Germany)	Surgical excision not required if ALH/CLCIS involves ≤3 TDLUs in vacuum assisted biopsy and radiologic pathologic concordant	Open biopsy and preferably complete excision	Open biopsy and preferably complete excision	
National Health System, 2018 (UK)	(Category B ₃ , lesion of uncertain malignant potential) Surgical excision not required if diagnosed on 14G core or VAB and if radiologic-pathologic concordant	(Category B5a, malignant in situ) Surgical excision	Only referred as non-pleomorphic LCIS with necrosis or mass forming (Category 4, suspicious) Repeat sampling with 14g core or vacuum assisted biopsy	
Cancer Australia, 2016 (Australia)	Surgical excision not required if radiologic pathologic concordant	Surgical excision	Surgical excision	
		Kuba MG and Brogi E. Histopathology (submitted for review)		

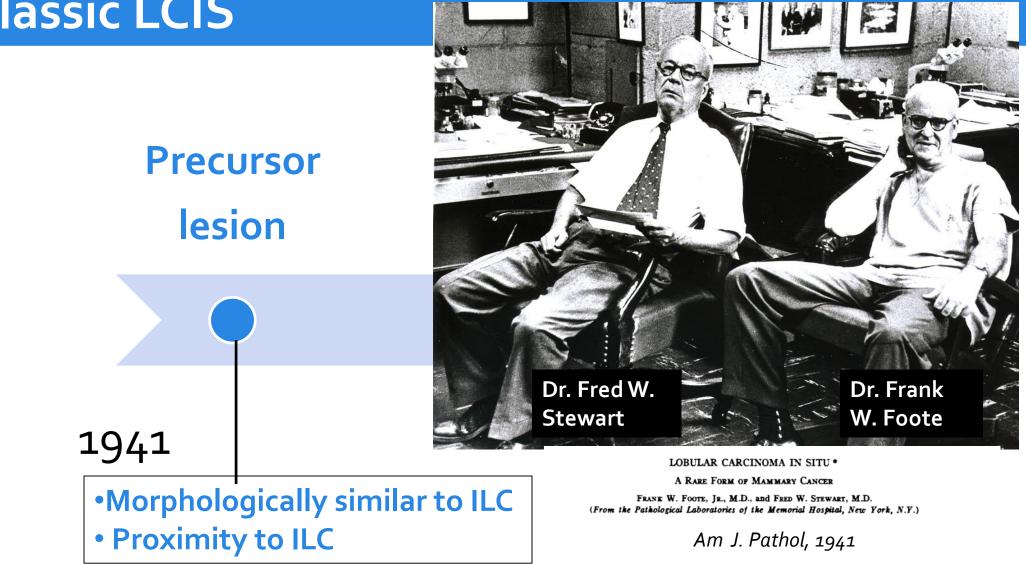

CNB diagnosis Societies recommendations	Classic lobular neoplasia (ALH/Classic LCIS)	Pleomorphic LCIS	Florid LCIS
NCCN ¹ , 2022 (US)	Surgical excision not required if radiologic pathologic concordant	Surgical excision	Not mentioned
American Society of Breast Surgeons, 2016 (US)	Surgical excision not required if radiologic pathologic concordant	Surgical excision	Surgical excision
Second International Consensus Conference on B3 lesions, 2018 (Europe)	(Category B ₃ , lesion of uncertain malignant potential) Excision with VAB if visible on imaging; if findings are pathologic- radiologic concordant and no residua lesion then surveillance is appropriate	(Category B5a, malignant in situ) Surgical excision	(Category B5a, malignant in situ) Surgical excision
ESMO ² , 2019 (Europe)	Surgical excision not required	Surgical excision	Not mentioned
AGO ³ , 2019 (Germany)	Surgical excision not required if ALH/CLCIS involves ≤3 TDLUs in vacuum assisted biopsy and radiologic pathologic concordant	Open biopsy and preferably complete excision	Open biopsy and preferably complete excision
National Health System, 2018 (UK)	(Category B3, lesion of uncertain malignant potential) Surgical excision not required if diagnosed on 14G core or VAB and if radiologic-pathologic concordant	(Category B5a, malignant in situ) Surgical excision	Only referred as non-pleomorphic LCIS with necrosis or mass forming (Category 4, suspicious) Repeat sampling with 14g core or vacuum assisted biopsy
Cancer Australia, 2016 (Australia)	Surgical excision not required if radiologic pathologic concordant	Surgical excision	Surgical excision
		Kuba MG and Brogi E. Histopat	

ıg

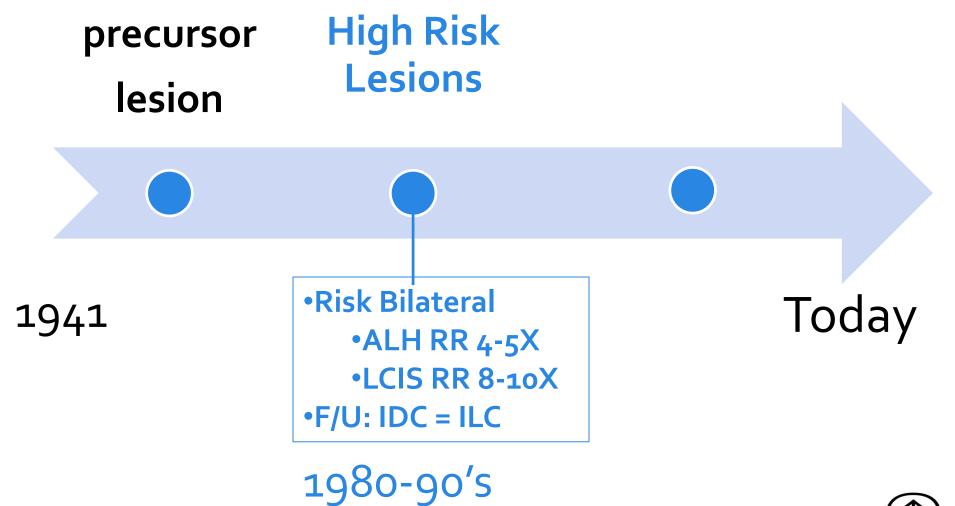
F/P-LCIS at/near margin: re-excise to clear margin optimal margin clearance unknown (usually 2 mm clearance is suggested as for DCIS)

Classic LCIS usually adjacent to F/P-LCIS

Classic LCIS→ margin status is not reported



Regional guidelines on management of non-invasive lobular neoplasia in surgical excisions


	Classic lobular neoplasia (ALH/Classic LCIS)	Pleomorphic LCIS	Florid LCIS
NCCN ¹ , 2022 (US)		Negative margins should be considered	not specifically mentioned
American Society of Breast Surgeons, 2016 (US)		Margin adequacy not mentioned	Margin adequacy not mentioned
ESMO², 2019 (Europe)		Negative margins and <mark>radiation</mark> therapy should be considered	not specifically mentioned
AGO ³ , 2019 (Germany)	Size and margin status not reported	Complete excision recommended	Complete excision recommended
NHS ⁴ /The Royal College of Pathologists, 2016, (UK)		Extent of disease should be recorded Negative margins recommended	Margin adequacy not mentioned
Cancer Australia, 2016 (Australia)		Margin status should be recorded Re-excision should be considered if positive margin	Margin status should be recorded Re-excision considered on a case-by-case basis after multidisciplinary discussion

Kuba MG and Brogi E. Histopathology (submitted for review)

Classic LCIS

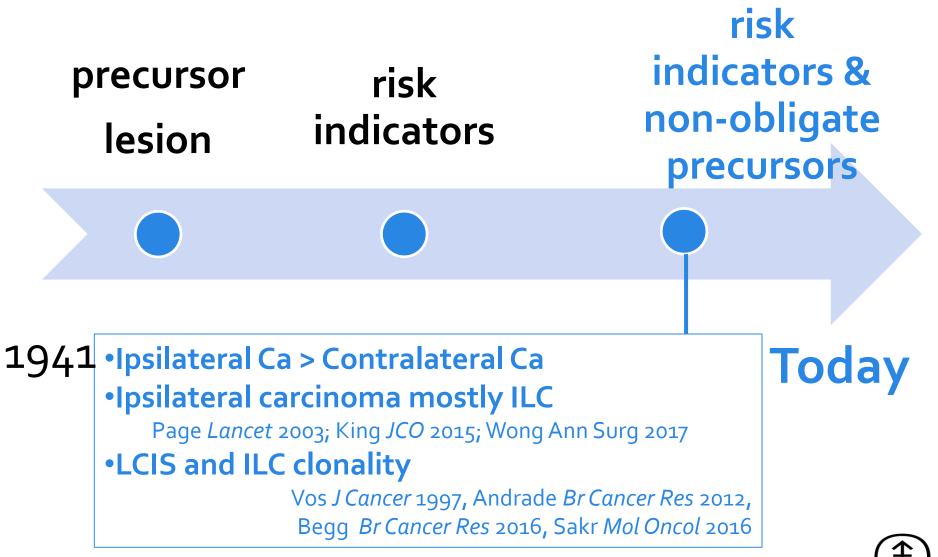
Memorial Cancer Cer

			Median age		Carcinom	nas at F/U	Carc	inoma Later	ality
Author Y ear	Population years	patients		F/U (years)	Patients with Carcinoma	Type of carcinoma	lpsi- lateral	Contra- lateral	Bi-lateral
Rosen 1978	MSKCC 1940-1950	99	45 Y	24	29 (29%)	• IDC>ILC		Unclear	
Page 1991	Nashville Cohort 1950-1968	39	45 Y	19	9 (23%)	• 70% ILC • 2% Tubular • 10% IDC	50%	40%	10%
King 2015	MSKCC 1980-2009	1004	50 y	6.75	150 (15%)	• 29% IDC • 35% DCIS • 27% ILC	63%	25%	18%
Wong 2017	SEER 1983-2014	19462	52 y	8.1	1837 (9.4%)	• 42.4% IDC • 20.8% DCIS • 20% ILC	55.2% 69% of ILCs 49.2% of IDCs	44.5% 30% of ILCs 50.8% of IDCs	N/A

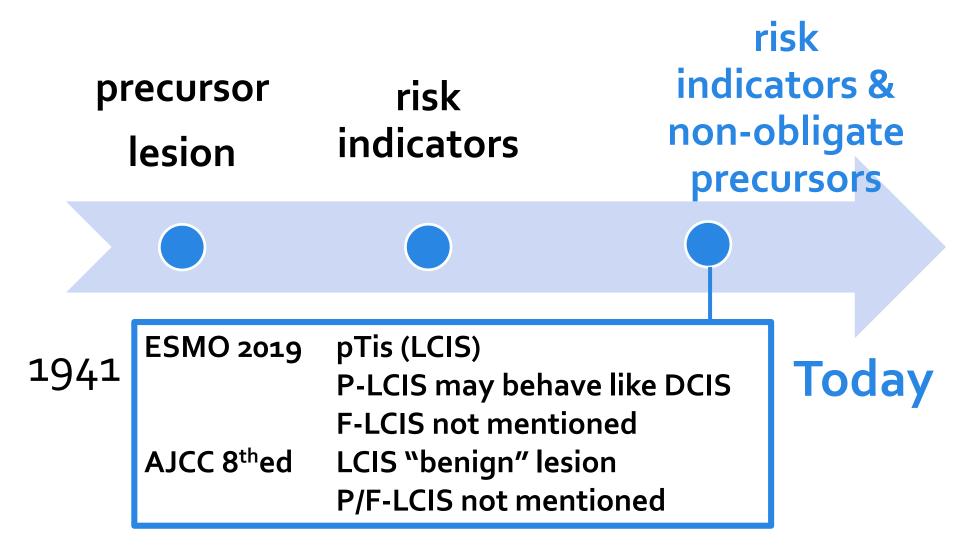
					Carcinom	nas at F/U	Carcinoma Laterality		
Author Y ear	Population years	patients	Median age	F/U (years)	Patients with Carcinoma	Type of carcinoma	lpsi- lateral	Contra- lateral	Bi-lateral
Rosen 1978	MSKCC 1940-1950	99	45 Y	24	29 (29%)	• IDC>ILC		Unclear	
Page 1991	Nashville Cohort 1950-1968	39	45 Y	19	9 (23%)	• 70% ILC • 2% Tubular • 10% IDC	50%	40%	10%
King 2015	MSKCC 1980-2009	1004	50 y	6.75	150 (15%)	• 29% IDC • 35% DCIS • 27% ILC	63%	25%	18%
Wong 2017	SEER 1983-2014	19462	52 y	8.1	1837 (9.4%)	• 42.4% IDC • 20.8% DCIS • 20% ILC	55.2% 69% of ILCs 49.2% of IDCs	44.5% 30% of ILCs 50.8% of IDCs	N/A

Author Y ear			Median age		Carcinom	as at F/U	Carcinoma Laterality		
	Population years	patients		F/U (years)	Patients with Carcinoma	Type of carcinoma	lpsi- lateral	Contra- lateral	Bi-lateral
Rosen 1978	MSKCC 1940-1950	99	45 Y	24	29 (29%)	• IDC>ILC		Unclear	
Page 1991	Nashville Cohort 1950-1968	39	45 Y	19	9 (23%)	• 70% ILC • 2% Tubular • 10% IDC	50%	40%	10%
King 2015	MSKCC 1980-2009	1004	50 y	6.75	150 (15%)	• 29% IDC • 35% DCIS • 27% ILC	63%	25%	18%
Wong 2017	SEER 1983-2014	19462	52 y	8.1	1837 (9.4%)	• 42.4% IDC • 20.8% DCIS • 20% ILC	55.2% 69% of ILCs 49.2% of IDCs	44.5% 30% of ILCs 50.8% of IDCs	N/A

					Carcinon	Carcinomas at F/U		Carcinoma Laterality		
Author Y ear	Population years	patients	Median age	F/U (years)	Patients with Carcinoma	Type of carcinoma	lpsi- lateral	Contra- lateral	Bi-lateral	
Rosen 1978	MSKCC 1940-1950	99	45 Y	24	29 (29%)	• IDC>ILC		Unclear		
Page 1991	Nashville Cohort 1950-1968	39	45 Y	19	9 (23%)	• 70% ILC • 2% Tubular • 10% IDC	50%	40%	10%	
King 2015	MSKCC 1980-2009	1004	50 y	6.75	150 (15%)	• 29% IDC • 35% DCIS • 27% ILC	63%	25%	18%	
Wong 2017	SEER 1983-2014	19462	52 y	8.1	1837 (9.4%)	• 42.4% IDC • 20.8% DCIS • 20% ILC	55.2% 69% of ILCs 49.2% of IDCs	44.5% 30% of ILCs 50.8% of IDCs	N/A	


					Carcinom	nas at F/U	Carci	noma Later	ality
Author Y ear	l i patients i l	F/U (years)	Patients with Carcinoma	Type of carcinoma	Ipsi- lateral	Contra- lateral	Bi-lateral		
Rosen 1978	MSKCC 1940-1950	99	45 Y	24	29 (29%)	• IDC>ILC		Unclear	
Page 1991	Nashville Cohort 1950-1968	39	45 Y	19	9 (23%)	• 70% ILC • 2% Tubular • 10% IDC	50%	40%	10%
King 2015	MSKCC 1980-2009	1004	50 y	6.75	150 (15%)	• 29% IDC • 35% DCIS • 27% ILC	63%	25%	18%
Wong 2017	SEER 1983-2014	19462	52 y	8.1	1837 (9.4%)	• 42.4% IDC • 20.8% DCIS • 20% ILC	55.2% 69% of ILCs 49.2% of IDCs	44.5% 30% of ILCs 50.8% of IDCs	N/A

Classic LCIS - Long Term Follow-up


- 1004 women with classic LCIS only (diagnosis @MSKCC 1980-2009)
- Median age at Dx: 50 years (27-83)
- Median follow-up 81 months (6-368)
- 150/1004 (15%) women developed 168 BC
 - 63% ipsilateral, 25% contralateral, 12% bilateral
 - 56% invasive (IDC 29%, ILC 27%), DCIS 35%, other 9%
- 2% annual incidence of breast carcinoma
- Hormone chemoprevention significantly reduced the rate of subsequent breast carcinoma (p<0.001)
 - 7% with hormone chemoprevention
 - 21% without hormone chemoprevention

Staging – classic LCIS, P-LCIS (and F-LCIS)

Author	Cases	F/U (m or y)		Recurrence	Pts with recurrence were treated with at Dx of P/F-LCIS		
year		(range)	number	type	RadioTP	HormoneTP	
Downs-Kelly 2011	26	Mean 46 m (4-108)	1	1 PLCIS	0	1 (PLCIS)	
Khoury 2014	31	(7-91 m)	6	3 ILC, 1 IDC, 2 PLCIS	ο	3 (2ILC, 1 IDC)	
Flanagan 2015	7	Mean 4.1 y	0	0	0	0	
De Brot 2017	7	Median 59 m (45-66)	4	1 ILC, 1 microILC, 1 IDC, 1 DCIS	0	ı (DCIS)	
Savage 2018	12	Median 3.4 y (1.3-9.2)	0	0	0	0	
Desai 2018	11	Median 47 m	2	1 ILC, 1 PLCIS	1 (ILC)	1 (PLCIS)	
Nakhlis 2019	25	Median 58 m (1-224)	1	1 DCIS	0	0	
Kuba 2021	30	Median 37.5 m	3	2 P-ILC (1 pt DOD), 1 microILC	ı (P-ILC)	ı (P-ILC)	
					(キノ	Memorial Sloan Kettering Cancer Center	

Author	Cases	F/U (m or y)		Recurrence	Pts with recurrence were treated with at Dx of P/F-LCIS		
year		(range)	number	type	RadioTP	HormoneTP	
Downs-Kelly 2011	26	Mean 46 m (4-108)	1	1 PLCIS	0	1 (PLCIS)	
Khoury 2014	31	(7-91 m)	6	3 ILC, 1 IDC, 2 PLCIS	0	3 (2ILC, 1 IDC)	
Flanagan 2015	7	Mean 4.1 y	0	0	0	0	
De Brot 2017	7	Median 59 m (45-66)	4	1 ILC, 1 microILC, 1 IDC, 1 DCIS	Ο	ı (DCIS)	
Savage 2018	12	Median 3.4 y (1.3-9.2)	0	0	0	Ο	
Desai 2018	11	Median 47 m	2	1 ILC, 1 PLCIS	1 (ILC)	1 (PLCIS)	
Nakhlis 2019	25	Median 58 m (1-224)	1	1 DCIS	0	0	
Kuba 2021	30	Median 37.5 m	3	2 P-ILC (1 pt DOD), 1 microILC	ı (P-ILC)	ı (P-ILC)	
		,			(丰)	Cancer Center ₁₁	

Author	Cases	F/U (m or y)	I	Recurrence	Pts with recurrence were treated with at Dx of P/F-LCIS		
year		(range)	number	type	RadioTP	HormoneTP	
Downs-Kelly 2011	26	Mean 46 m (4-108)	1	1 PLCIS	Ο	1 (PLCIS)	
Khoury 2014	31	(7-91 m)	6	3 ILC, 1 IDC, 2 PLCIS	0	3 (2ILC , 1 IDC)	
Flanagan 2015	7	Mean 4.1 y	0	0	0	0	
De Brot 2017	7	Median 59 m (45-66)	4	1 ILC, 1 microILC, 1 IDC, 1 DCIS	0	ı (DCIS)	
Savage 2018	12	Median 3.4 y (1.3-9.2)	0	0	О	Ο	
Desai 2018	11	Median 47 m	2	1 ILC, 1 PLCIS	1 (ILC)	1 (PLCIS)	
Nakhlis 2019	25	Median 58 m (1-224)	1	1 DCIS	0	0	
Kuba 2021	30	Median 37.5 m	3	2 P-ILC (1 pt DOD), 1 microILC	1 (P-ILC)	1 (P-ILC)	
	149		17 (4 IL	C, 2 microILC, 2 IDC, 3 PLCIS	, 2 DCIS)	Memorial Sloan Kettering Cancer Center	

Author Cases		F/U (m or y)		Recurrence	Pts with recurrence were treated with at Dx of P/F-LCIS		
year		(range)	number	type	RadioTP	HormoneTP	
Downs-Kelly 2011	26	Mean 46 m (4-108)	1	1 PLCIS	Ο	1 (PLCIS)	
Khoury 2014	31	(7-91 m)	6	3 ILC, 1 IDC, 2 PLCIS	Ο	3 (2ILC , 1 IDC)	
Flanagan 2015	7	Mean 4.1 y	0	ο	0	0	
De Brot 2017	7	Median 59 m (45-66)	4	1 ILC, 1 microILC, 1 IDC, 1 DCIS	0	1 (DCIS)	
Savage 2018	12	Median 3.4 y (1.3-9.2)	0	0	О	0	
Desai 2018	11	Median 47 m	2	1 ILC, 1 PLCIS	1 (ILC)	1 (PLCIS)	
Nakhlis 2019	25	Median 58 m (1-224)	1	1 DCIS	0	0	
Kuba 2021	30	Median 37.5 m	3	2 P-ILC (1 pt DOD), 1 microILC	1 (P-ILC)	ı (P-ILC)	
	149		17		2 ILC	3 ILC, 1 IDC, 2 PLCIS, 1 DCIS	

Classic LCIS and ALH – Take home messages

- Many morphologic mimics and pitfalls BEWARE!!!
- High risk lesions and *non-obligate morphologic precursors*
- Relative Risk of subsequent breast carcinoma
 - 4X ALH, 8X classic LCIS
 - Carcinoma at F/U
 - ipsilateral >>contralateral
 - Ipsilateral carcinoma: ILC more common
- Management
 - Margin status not reported
 - ALH and classic LCIS in *rad-path concordant* CBX
 - In USA: Excision may be spared
 - Elsewhere: follow local management guidelines

P-LCIS and F-LCIS – Take Home Messages

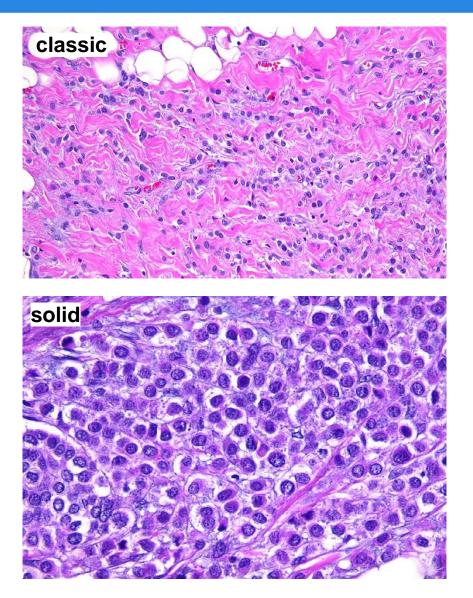
- Morphology WHO 2019 criteria
- Clinical and imaging presentation
 - Pleomorphic or indeterminate Ca²⁺
 - Mass with or without Ca²⁺
- Immunohistochemical profile
 - Same as classic LCIS
 - Cytoplasmic p120 IHC if aberrant E-cadherin
- Molecular alterations: similar to classic LCIS, but a greater number

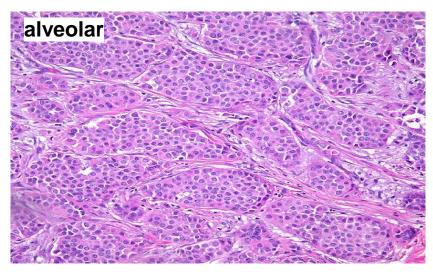
- (Micro)Invasion in 40-70% cases
 - Assess/ rule out (micro)invasion
 Areas of inflammation +/- reactive stroma
 - Include "positive" IHC marker(s)
- F-LCIS or P-LCIS in CNB \rightarrow EXC
 - Regardless of rad-path concordance

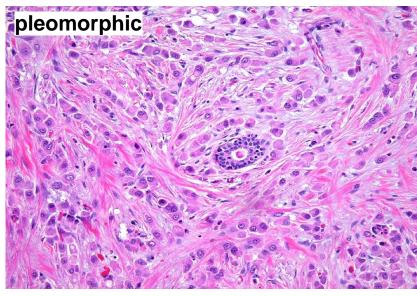
Limited F/U data

- F-LCIS or P-LCIS at ink → re-excision (if feasible)
- Very limited data on the benefits of HormoneTP and/or RadioTP

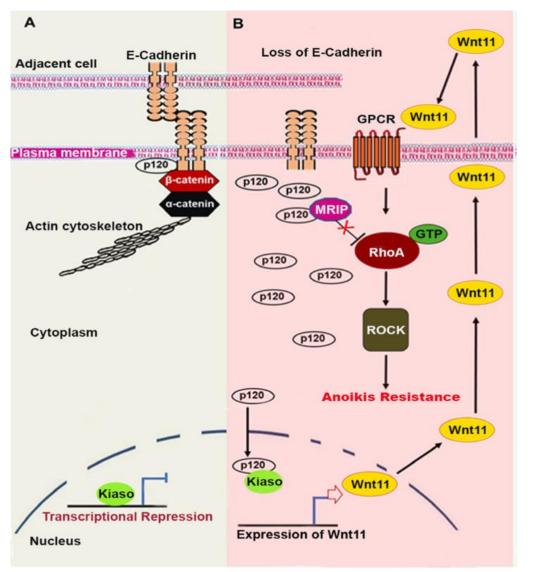
Thank you for your attention





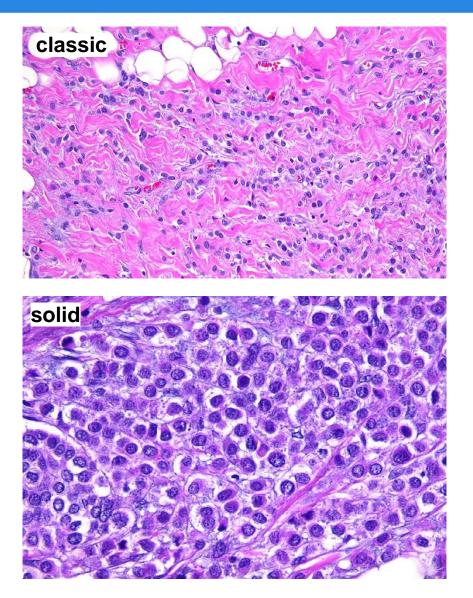


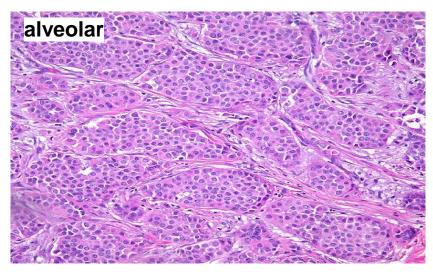
Pathology – ILC patterns

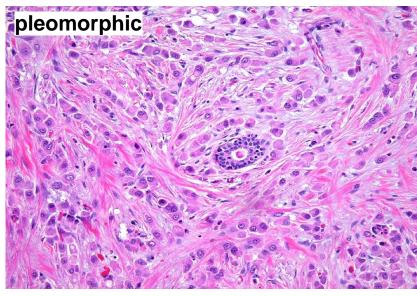


Memorial Sloan Kettering Cancer Center

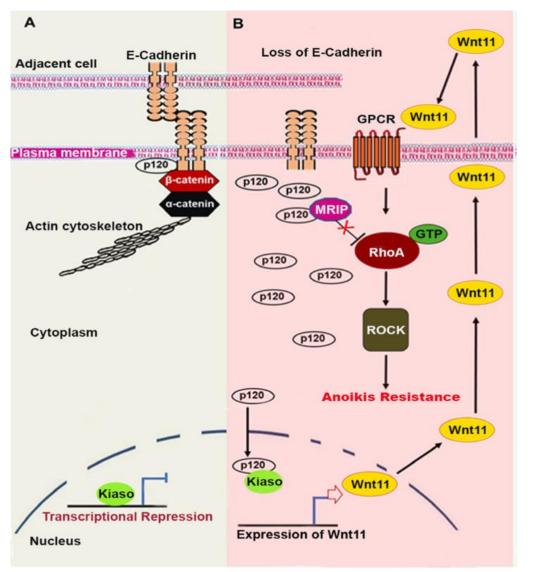
Pathology – E-cadherin


The E-cadherin gene, *CDH1*, is located on chromosome 16q22.1 and codes for a 120kDA transmembrane glycoprotein


Loss of E-cadherin is characteristic of ILC and is predominantly attributed to *CDH1* mutation


Loss of E-cadherin increases cytoplasmic accumulation of p120 catenin

Pathology – ILC patterns



Memorial Sloan Kettering Cancer Center

Pathology – E-cadherin

The E-cadherin gene, *CDH1*, is located on chromosome 16q22.1 and codes for a 120kDA transmembrane glycoprotein

Loss of E-cadherin is characteristic of ILC and is predominantly attributed to *CDH1* mutation

Loss of E-cadherin increases cytoplasmic accumulation of p120 catenin

CNBs with F-LCIS/or P-LCIS: upgrades @EXC

	CNB			Upgrade		
Author, Year	Diagnosis	cases	DCIS	Invasive	all carcinomas/ all cases	rate (%)
Chivukula, 2008	PLCIS	12	О	3 ILC	3/12	25.0%
Carder, 2010	PLCIS	10	0	1 mIC; 2 ILC	3/10	30.0%
Niell, 2012	PLCIS	4	1	2 ILC; 1 IDC	4/4	100%
D'Alfonso, 2013	FLCIS	8	0	1 mIC; 1 ILC	2/8	25.0%
Flanagan, 2015	PLCIS	17	3	5 ILC; 1 IC	9/17	53.0%
Susnik, 2016	PLCIS	15	0	4 IC	4/15	26.7%
Fasola, 2017	PLCIS	20	2	4 ILC	6/20	30.0%
Guo, 2018	PLCIS	25	О	2 mIC; 13 ILC; 1 IDC	16/25	64.0%
Shamir, 2018	PLCIS	8	0	3 ILC	3/8	38.0%
Shanni, 2010	FLCIS	6	1	1 ILC	2/6	33.0%
	PLCIS	111	6	42	48/111	43.2%
Total Upgrades	FLCIS	14	1	3	4/14	28.6%
iotal opyrades	PLCIS +	175	7	.Γ	52/125	42.0%
Calle C et al. <i>Breast J</i> 2	020; Fd(6)/S 148-12	125	/	45	2~1~~2	42.070

Rad-path concordant CNBs with F-LCIS/or P-LCIS: upgrades

@EXC

	CNB			Upgrade		
Author, Year	Diagnosis	cases	DCIS	Invasive	all carcinomas/ all cases	rate (%)
Chivukula, 2008	PLCIS	12	0	3 ILC	3/12	25.0%
Carder, 2010	PLCIS	10	О	1 mIC; 2 ILC	3/10	30.0%
Niell, 2012	PLCIS	4	1	2 ILC; 1 IDC	4/4	100%
D'Alfonso, 2013	FLCIS	8	О	1 mIC; 1 ILC	2/8	25.0%
Flanagan, 2015	PLCIS	17	3	5 ILC; 1 IC	9/17	53.0%
Susnik, 2016	PLCIS	15	0	4 IC	4/15	26.7%
Fasola, 2017	PLCIS	20	2	4 ILC	6/20	30.0%
Guo, 2018	PLCIS	25	о	2 mIC; 13 ILC; 1 IDC	16/25	64.0%
Shamir, 2018	PLCIS	8	0	3 ILC	3/8	38.0%
Shanni, 2010	FLCIS	6	1	1 ILC	2/6	33.0%
	PLCIS	111	6	42	48/111	43.2%
.	FLCIS	14	1	3	4/14	28.6%
Egital Upgrades Calle Cettal. Breast J 2020;26(6):1148-1155 Total Cettal. Breast J 2020;26(6):1148-1155 Total Cettal. Breast J 2020;26(6):1148-1155						

Rad-path concordant CNBs with F-LCIS/or P-LCIS: upgrades

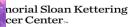
			() () () () () () () () () () () () () ((C		
Author, Year	CNB Diagnosis	cases	DCIS	Carcinoma in Excisio Invasive	n all carcinomas/ all cases	Upgrade rate (%)
Chivukula, 2008	PLCIS	12	0	3 ILC	3/12	25.0%
Carder, 2010	PLCIS	10	0	1 mIC; 2 ILC	3/10	30.0%
Niell, 2012	PLCIS	4	1	2 ILC; 1 IDC	4/4	100%
D'Alfonso, 2013	FLCIS	8	0	1 mIC; 1 ILC	2/8	25.0%
Flanagan, 2015	PLCIS	17	3	5 ILC; 1 IC	9/17	53.0%
Susnik, 2016	PLCIS	15	0	4 IC	4/15	26.7%
Fasola, 2017	PLCIS	20	2	4 ILC	6/20	30.0%
Guo, 2018	PLCIS	25	0	2 mIC; 13 ILC; 1 IDC	16/25	64.0%
Shamir, 2018	PLCIS	8	0	3 ILC	3/8	38.0%
	FLCIS	6	1	1 ILC	2/6	33.0%
	PLCIS	111	6	42	48/111	43.2%
Total Upgradas	FLCIS	14	1	3	4/14	28.6%
Ealte Lupgrades	2020p2666;1148-1	155			Falaar	

Classic LCIS/ ALH may mimic other lesions

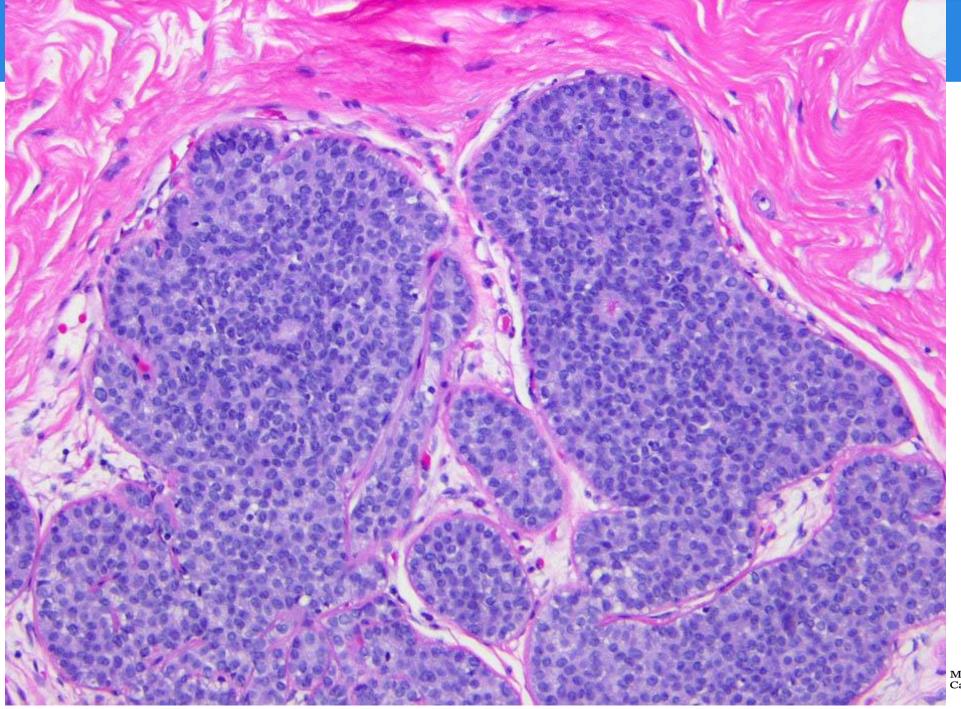
Classic LCIS is a common mimic of Low Grade DCIS, solid use E-cadherin/ p120				Classic LCIS/ ALH coexisting with other lesions –) few possible scenarios various scenarios UDH or acini (partial) DDx: UDH, ADH, solid LG carcinoma in situ collagenous spherulosis		
	ALH or classic LCIS			adenosis		
	partial involvement acini	Involves UDH	With Collagenous spherulosis	In Sclerosing adenosis		
	May mimic	May mimic	Low grade	Invasive	Memorial Sloan Kettering Cancer Center,	

Classic LCIS/ ALH may mimic other lesions

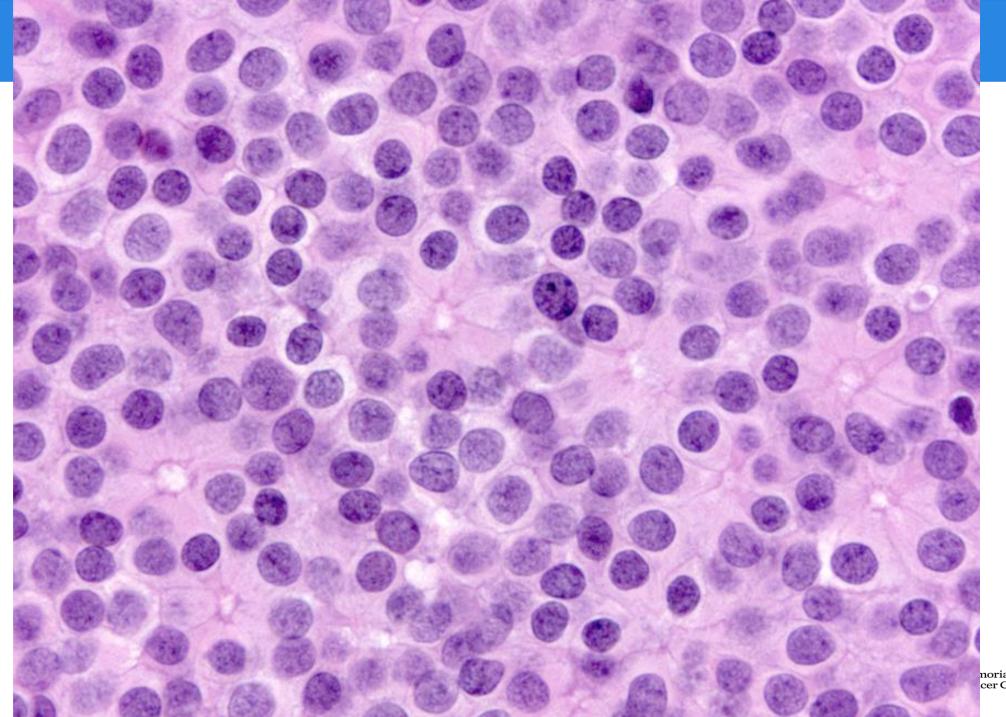
Classic LCIS can mimic Solid Low Grade DCIS


use E-cadherin/ p120

	ALH or classic LCIS				
ln	Normal acini (partial involvement)	UDH	Collagenous spherulosis	Sclerosing adenosis	
May mimic	ADH	UDH/ ADH/ Solid Low grade DCIS/ mammary carcinoma in situ	Low grade DCIS	Invasive lobular carcinoma	



10.57



DCIS LCIS **E-cadherin**

emorial Sloan Kettering ncer Center

Memorial Sloan Kettering Cancer Center

norial Sloan Kettering cer Center

Staging of LCIS

	AJCC 7 th ed	AJCC 8 th ed			
Classic LCIS (Florid LCIS) Pleomorphic LCIS	pTis (LCIS)	 LCIS not classified as carcinoma in situ Regarded as "benign" entity 			
• PICIS (and EICIS) biology is not taken into account					

- P-LCIS (and F-LCIS) biology is not taken into account
- LCIS not recognized as non-obligate precursor of ILC

NCCN guidelines for Breast Cancer version 4.2022 – "Note: LCIS is a benign entity."

American Joint Committee Cancer (AJCC) - Staging of LCIS

	AJCC 7 th ed	AJCC 8 th ed			
Classic LCIS (Florid LCIS) Pleomorphic LCIS	pTis (LCIS)	 LCIS not classified as carcinoma in situ Regarded as "benign" entity 			
 P-LCIS (and F-LCIS) biology is not taken into account 					

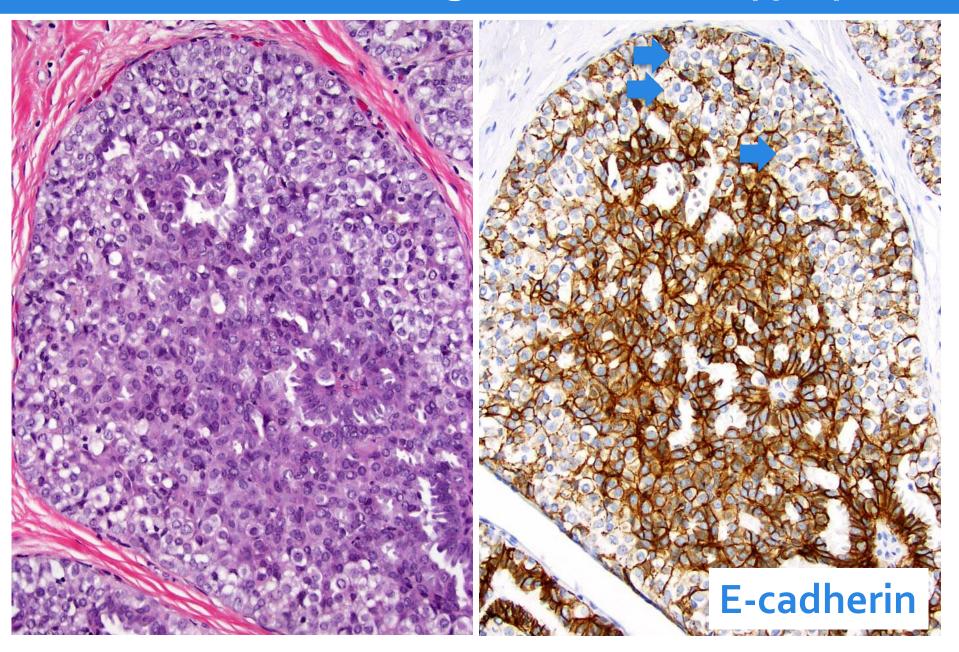
• LCIS not recognized as non-obligate precursor of ILC

NCCN guidelines for Breast Cancer version 4.2022 – "Note: LCIS is a benign entity."

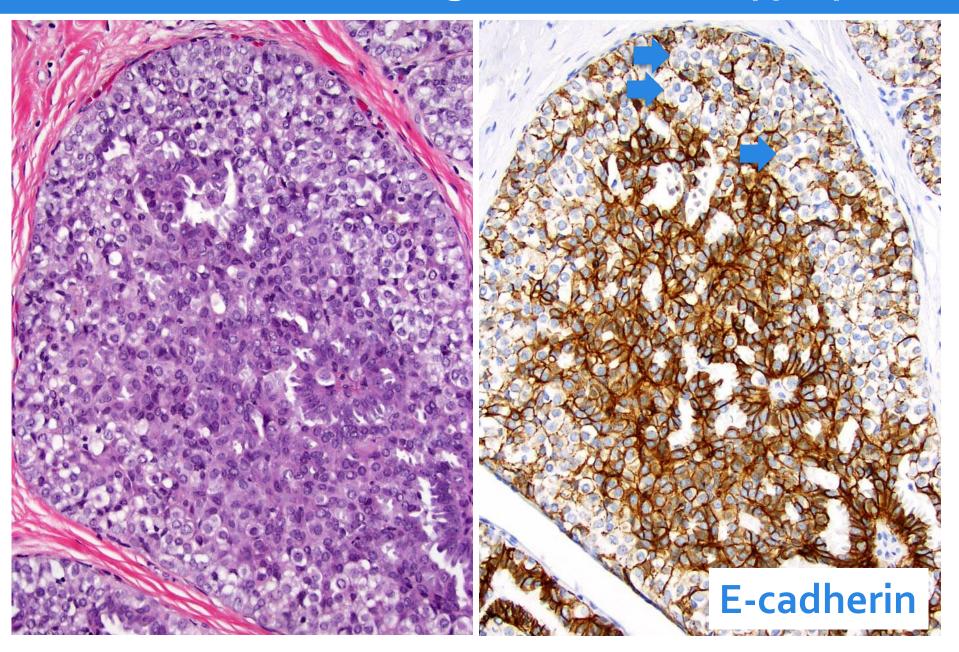
ESMO Staging recommendations for LCIS

Diagnosis	Classification	Risk and management
Lobular neoplasia (formerly called LCIS)	Non-obligate precursor to invasive cancer	 Risk factor for subsequent invasive breast cancer (Relative Risk : 5.4-12) Does NOT require surgical treatment Radiotherapy not warranted for LCIS (except P-LCIS)
Florid LCIS	Not mentioned	Not mentioned
Pleomorphic LCIS	"may behave similarly to DCIS…"	 " and should be treated accordingly, after multidisciplinary discussion". " should be considered from a treatment perspective as high grade DCIS". (Radiotherapy recommended)

Cardoso F et al. Ann Oncol June 24, 2019


ESMO Staging recommendations for LCIS

Diagnosis	Classification	Risk and management
Lobular neoplasia (formerly called LCIS)	Non-obligate precursor to invasive cancer	 Risk factor for subsequent invasive breast cancer (Relative Risk : 5.4-12) Does NOT require surgical treatment Radiotherapy not warranted for LCIS (except P-LCIS)
Florid LCIS	Not mentioned	Not mentioned
Pleomorphic LCIS	"may behave similarly to DCIS…"	 " and should be treated accordingly, after multidisciplinary discussion". " should be considered from a treatment perspective as high grade DCIS". (Radiotherapy recommended)


Cardoso F et al. Ann Oncol June 24, 2019

Classic LN Involving Usual Ductal Hyperplasia

Classic LN Involving Usual Ductal Hyperplasia

Classic LCIS - long term follow-up studies

			Median		E/II Carcir		F/U	Carcinom	as at F/U	Carcin	oma Laterality	
Study	Cohort (years)	#	age	surgery	(years)	Patients with Carcinoma	Type of carcinoma	Ipsilateral	Contralateral	Bilat		
Rosen 1978	MSKCC 1940- 1950	99	45 Y		24	29 (29%)	• IDC>ILC		Unclear			
Page 1991	Nashville Cohort 1950-1968	39	45 Y		19	9 (23%)	• 70% ILC • 2% Tubular • 10% IDC	50%	40%	10%		
King 2015	MSKCC 1980-2009	1004	50 y		6.75	150 (15%)	• 29% IDC • 35% DCIS • 27% ILC	6 ₃ %	25%	18%		
Wong 2017	SEER 1983-2014	19462	52 y		8.1	1837 (9.4%)	• 42.4% IDC • 20.8% DCIS • 20% ILC	55.2% 69% of ILCs 49.2% of IDCs	44.5% 30% of ILCs 50.8% of IDCs	N/A		
Van Maaren 2021	Netherlands Cancer Registry (1989-2017)	1890	51 y	505 None 904 BCS 193 Mastx 238 unkn	8.5	318 (16.8%)	 270 (14.2%) IBC 48 (2.5%) DCIS 	IBC in BCS pts 103 (64.8%)	IBCs in BCS pts 55 (34.6%) ▲ Memorial Sloan Ket	NS		

Classic LCIS - long term follow-up studies

			Median	F/U	Carcinom	as at F/U	Carcir	noma Laterality	
Study	Cohort (years)	#	age	(years)	Patients with Carcinoma	Type of carcinoma	Ipsilateral	Contralateral	Bilat
Rosen 1978	MSKCC 1940- 1950	99	45 Y	24	29 (29%)	• IDC>ILC		Unclear	
Page 1991	Nashville Cohort 1950-1968	39	45 Y	19	9 (23%)	• 70% ILC • 2% Tubular • 10% IDC	50%	40%	10%
King 2015	MSKCC 1980-2009	1004	50 y	6.75	150 (15%)	• 29% IDC • 35% DCIS • 27% ILC	63%	25%	18%
Wong 2017	SEER 1983-2014	19462	52 y	8.1	1837 (9.4%)	• 42.4% IDC • 20.8% DCIS • 20% ILC	55.2% 69% of ILCs 49.2% of IDCs	44.5% 30% of ILCs 50.8% of IDCs	N/A
Van Maaren 2021	Netherlands Cancer Registry (1989-2017)	1890	51 y	8.5	318 (16.8%)	• 270 (14.2%) IBC • 48 (2.5%) DCIS	IBC in BCS pts 103 (64.8%)	IBCs in BCS pts 55 (34.6%)	NS

Classic LCIS - long term follow-up studies

			Median	E/II	Carcinomas at F/U F/U		Carcin	noma Laterality	
Study	Cohort (years)	#	age	(years)	Patients with Carcinoma	Type of carcinoma	Ipsilateral	Contralateral	Bilat
Rosen 1978	MSKCC 1940- 1950	99	45 Y	24	29 (29%)	• IDC>ILC		Unclear	
Page 1991	Nashville Cohort 1950-1968	39	45 Y	19	9 (23%)	• 70% ILC • 2% Tubular • 10% IDC	50%	40%	10%
King 2015	MSKCC 1980-2009	1004	50 y	6.75	150 (15%)	• 29% IDC • 35% DCIS • 27% ILC	63%	25%	18%
Wong 2017	SEER 1983-2014	19462	52 Y	8.1	1837 (9.4%)	• 42.4% IDC • 20.8% DCIS • 20% ILC	55.2% 69% of ILCs 49.2% of IDCs	44.5% 30% of ILCs 50.8% of IDCs	N/A
Van Maaren 2021	Netherlands Cancer Registry (1989-2017)	1890	51 Y	8.5	318 (16.8%)	• 270 (14.2%) IBC • 48 (2.5%) DCIS	IBC in BCS pts 103 (64.8%)	IBCs in BCS pts 55 (34.6%)	NS
	(1) Memorial Sloan Kettering Cancer Center							Kettering	

European perspective on the management of lobular lesions VAB for classic LN: open excision for variant LCIS

Table 5 Summary of the recent literature on LN since 2015

Author and year	Number of patients analyzed or type of publication if no patients have been analyzed (e.g., review or comment)	Findings	Conclusions
Calhoun et al. 2016 [50]	n=76 on CNB Upgrade after 15 years follow-up	10 cases (13%) with upgrade	The extent of LN in CNB may be an indicator of the likelihood of upgrade to carcinoma
onaldson et al. 2018 [15]	n = 393 on CNB with ADH/LN Upgrade rate and follow-up (87 months)	Upgrade in $n = 181$ (46%) The 7-year cumulative breast cancer incidence was 9.9%	Multiple foci do not influence BC development Close clinical and radiologic follow-up for more than 5 years in this patient population
ves et al. 2016 [51]	n = 25 LN on CNB accompanying fibroadenomas	Upgrade in 1 case (5%)	Rare upgrade
ing et al. 2015 [40]	n = 1004 with /wo chemoprevention Median follow-up 81 months	10-Year cumulative risk7% With chemoprevention21% (3.2% per year) with no chemoprevention	Chemoprevention reduced BC risk Volume of disease, (ratio of slides with LCIS to total number of slides) was associated with breast cancer development (p = 0.008)
ao et al. 2017 [52]	BC risk in LN -Hormone receptor status -Skin color		LN was higher in HR positive and in black patients
(axwell et al. 2016 [53]	n = 392 pure LN 326 with OE	Upgrade to pleomorphic LN In 23/326 cases (7%)	Screen detected LN -In younger women -Unilateral -Non-pleomorphic
akhlis et al. 2016 [54]	n = 77 on CNB	Upgrade in 2 of 77 cases (2%)	Routine excision is not indicated for patients with pure LN on CB and concordant imaging findings
enshaw and Gould, 2016 [4]	n=69 CNB with LN Upgrade Follow-up	Upgrade in 17 of 69 cases (25.8%)	Immediate BC risk is higher for ADH than LN Long-term BC risk is higher for LN than ADH
chmidt et al. 2018 [55]	n = 178 on CNB 115 OE 54 Surveillance (55 months follow-up)	Upgrade in 13/115 cases (11%) 1/54 Cases developed BC after follow-up (2%)	Low-upgrade rate and low BC risk
en et al. 2016 [56]	n = 447 (ALH and LCIS)	Upgrade ALH 2.4% Upgrade LCIS 8.4%	Excision is recommended for LCIS on CNB and for ALH surveillance at 6, 12, and 24 months
ısnik et al. 2016 [47]	n = 302 of 370 Upgrade after OE	Upgrade In 3.5% (8/228) pure LN lesions In 26.7% in "LCIS variants" (4/15) in 28.3% in LN with ductal atypia (15/53)	LN with non-classic morphology or with associated ductal atypia requires surgical excision, this can be avoided in pure LN
ie et al. 2017 [57]	Survival outcome in SEER database (n=208+5756 cases) Bilateral or partial mastectomy	OS after partial mastectomy without radiotherapy was not inferior to patients who underwent bilat- eral prophylactic mastectomy	Low breast cancer-specific mortality in patients with LCIS, therefore aggressive prophylactic surgery like bilateral prophylactic mastectomy should not be advocated for most patients with LCIS

Broad range of upgrade rates at EXC: 2% - 46%

Rageth C et al Breast Cancer Research and Treatment (2019) 174:279–296

Memorial Sloan Kettering Cancer Center

Consensus recommendation of the panel

A lesion containing classical LN, which is visible on imaging should undergo excision with VAB. Thereafter surveillance is justified if there is no pathological–radiological discordance and no residual lesion.

In contrast, morphologic variants of LN (LIN 3, pleomorphic LCIS, and florid LCIS), which are reported as B5a lesions should undergo OE

B3 lesions- consensus recommendations

	Diagnosis made by CNB	Diagnosis made by VAB
ADH	OE	OE. surveillance can be considered in a few special situations after discussion at the MDM
FEA	VAB to complete removal of the lesion visible in any imaging method	Surveillance is justified if the radiological lesion has been removed
LN	OE or VAB (remove US-visible lesion)	OE or high-risk surveillance if the radiological lesion has been removed
PL	Kemove by VAB	
PT	OE. Free margins in borderline and malignant PTs	Follow-up in completely excised benign PTs surveillance is justified
RS	VAB or OE of visible lesion	Surveillance is justified if the radiological lesion has been removed

VAB usually the lesion should not exceed 2.5 cm in diameter. For larger lesions, OE is preferred, *LN* only classical type. LN pleomorphic, LIN 3, LN extended, and LN with necrosis are defined as B5a lesions and should undergo OE, *PL* with atypia: Such a lesion should not be classified as papilloma, but rather as FEA or ADH according to the type of atypia found

OE = open excision VAB = vacuum-assisted biopsy

Rageth C et al *Breast Cancer Research and Treatment* (2019) 174:279–296

Consensus recommendation of the panel

A lesion containing classical LN, which is visible on imaging should undergo excision with VAB. Thereafter surveillance is justified if there is no pathological–radiological discordance and no residual lesion.

In contrast, morphologic variants of LN (LIN 3, pleomorphic LCIS, and florid LCIS), which are reported as B5a lesions should undergo OE

B3 lesions- consensus recommendations

	Diagnosis made by CNB	Diagnosis made by VAB
ADH	OE	OE. surveillance can be considered in a few special situations after discussion at the MDM
FEA	VAB to complete removal of the lesion visible in any imaging method	Surveillance is justified if the radiological lesion has been removed
LN	OE or VAB (remove US-visible lesion)	OE or high-risk surveillance if the radiological lesion has been removed
PL	Kemove by VAB	
PT	OE. Free margins in borderline and malignant PTs	Follow-up in completely excised benign PTs surveillance is justified
RS	VAB or OE of visible lesion	Surveillance is justified if the radiological lesion has been removed

VAB usually the lesion should not exceed 2.5 cm in diameter. For larger lesions, OE is preferred, *LN* only classical type. LN pleomorphic, LIN 3, LN extended, and LN with necrosis are defined as B5a lesions and should undergo OE, *PL* with atypia: Such a lesion should not be classified as papilloma, but rather as FEA or ADH according to the type of atypia found

OE = open excision VAB = vacuum-assisted biopsy

Rageth C et al *Breast Cancer Research and Treatment* (2019) 174:279–296

European multidisciplinary expert panel

Christoph J. Rageth^{1,18} · Elizabeth A. M. O'Flynn² Katja Pinker³ · Rahel A. Kubik-Huch⁴ · Alexander Mundinger⁵ · Thomas Decker⁶ · Christoph Tausch⁷ · Florian Dammann⁸ · Pascal A. Baltzer⁹ · Eva Maria Fallenberg¹⁰ · Maria P. Foschini¹¹ · Sophie Dellas¹² · Michael Knauer¹³ · Caroline Malhaire¹⁴ · Martin Sonnenschein¹⁵ · Andreas Boos¹⁶ Elisabeth Morris³ Zsuzsanna Varga¹⁷

A diagnosis of a visible (on imaging by mammogra-What method of excision should be chosen A lesion has been removed by means of VAB and the lesion on imaging phy or ultrasound) lesion by means of spring-loaded seems to be removed core biopsy (14–18 g) has been made The lesion The lesion Undecided/ Undecided/abstain VAB is accept-Open biopsy Undecided/ An open re-A repeat VAB Wait and should be should not be should be preexcision should should be perabstain able see is justiabstain be performed fied removed removed ferred formed 0 ADH 35 (100%) 0 8 (21.1%) 28 (73.7%) 2 (5.3%) 20 (51.3%) 0 18 (46.2%) 1 (2.6%) 43 (65.2%) 14 (21.2%) 9 (13.6%) 51 (75%) 15 (22.1%) 2(2.9%)2 (2.9%) 0 67 (97.1%) 0 FEA 46 (68.7%) LN 12 (17.9%) 34 (50%) 28 (41.2%) 6 (8.8%) 8 (11.6%) 9 (13.4%) 0 58 (84.1%) 3 (4.3%) 39 (76.5%) 9 (17.6%) 3 (5.9%) 37 (71.2%) 12 (23.1%) 3 (5.8%) 0 0 52 (98.1%) 1 (1.9%) PL PT 48 (98%) 1 (2%) 11 (22%) 36 (72%) 3 (6%) 4 (7.8%) 45 (88.2%) 2 (3.9%) 0 0 RS 4 (8.5%) 37 (80.4%) 7 (15.2%) 42 (89.4%) 3 (6.4%) 28 (59.6%) 15 (31.9%) 2 (4.3%) 2 (4.3%) 0

 Table 9
 Summary of the voting for each pure B3 lesion

Rageth C et al Breast Cancer Research and Treatment

(2019) 174:279–296

F-LCIS and/or P-LCIS at CNB: Excision warranted

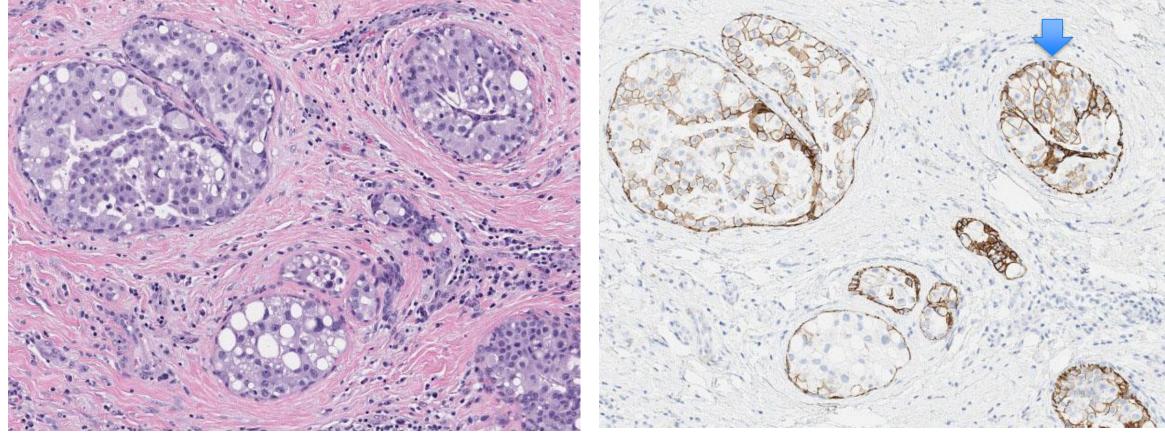
F-LCIS

Not specifically mentioned in continental Europe and UK guidelines Usually classified as

- B₄ (suspicious of malignancy) (UK) OR
- B5a (malignant in situ)

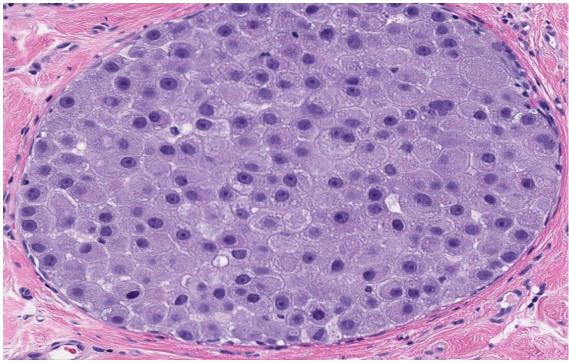
P-LCIS

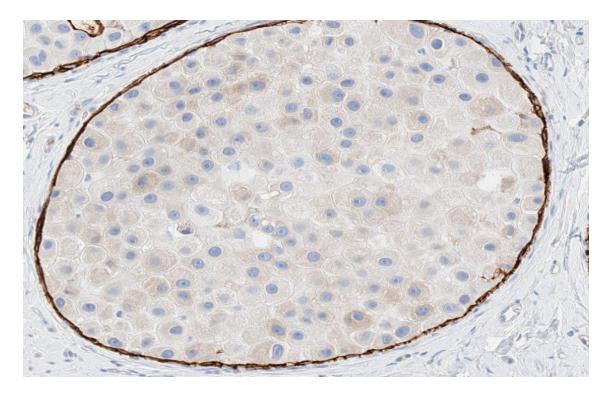
Classified as B5a (malignant in situ) according to continental Europe and UK guidelines


European guidelines for quality assurance in breast cancer screening and diagnosis Fourth Edition, 2006. https://screening.iarc.fr/ doc/ND7306954ENC_002.pdf Royal College of Pathologists. Guidelines for non-operative diagnostic procedures and reporting in breast cancer screening. 2021 https://www.rcpath.org/uploads/assets/4b16f19c-f7bd-456c-b212f557f8 04of66/G150-Non-op-reporting-breast-cancerscreening.pdf

E-cadherin expression patterns in F-LCIS and P-LCIS

Focal cohesive clusters with focal weak membrane stain


•



E-cadherin expression patterns in F-LCIS and P-LCIS

• Complete loss (most common)

