Medullary thyroid carcinoma

Ronald Ghossein, M.D. Attending Director of Head and Neck Pathology Department of Pathology Memorial Sloan-Kettering Cancer Center New York, NY

WHO 2022

 Medullary thyroid carcinoma (MTC) is a malignant tumour derived from the calcitonin producing parafollicular C cells of the thyroid gland.

Epidemiology

- <u>Rare disease</u>: 2% of thyroid malignancies; 8% of thyroid cancer-related deaths.
- <u>Sex:</u> Slight female predominance

Sporadic in 75% of cases, hereditary in 25%

 <u>Age at presentation:</u> Sporadic: mean45-55 yrs Hereditary: usually 10-30 yrs

Hereditary medullary thyroid carcinoma (MTC)

 MEN 2A (1 in 2 millions): MTC, pheochromocytoma and/or parathyroid proliferations

 MEN 2B (1 in 38 millions): Aggressive MTC, pheochromocytoma, oral and intestinal ganglioneuromas, and a Marfanoid body habitus

Isolated MTC: (formerly familial MTC)

Hereditary medullary thyroid carcinoma (MTC)

• MEN2A with cutaneous lichen amyloidosis

MEN2A with Hirschsprung's disease

RET mutations and associated risk of aggressive medullary thyroid carcinoma (MTC), pheochromocytoma (PHEO) and hyperparathyroidism (HPT)

Very strong mutation	1		
Aggressive MTC risk 💦 🔪	RET mutation	PHEO	HPT
	(protein change)	risk	risk
HIGHEST	Met918Thr	High	Low
	Ala883Phe	High	Low
HIGH	Cys634Ser/Arg/Gly/Tyr/Trp/Phe/Leu	High	High
	Leu790Phe	Low	Low
	Ser891Ala	Low	Intermediate
	Val804Met/Leu	Low	Intermediate
Weak mutation	Asp631Tyr	High	Intermediate
MODERATE	Cys630Arg/Tyr/Phe	Intermediate	Intermediate
	Cys620Phe/Arg/Ser/Gly/Tyr/Trp	Intermediate	Intermediate
	Cys618Phe/Arg/Ser/Gly/Tyr/Trp	Intermediate	Intermediate
	Cys611Phe/Gly/Ser/Tyr/Trp	Intermediate	Intermediate
	Cys609Phe/Gly/Arg/Ser/Tyr	Intermediate	Intermediate

Clinical presentation

 <u>Sporadic</u>: Palpable thyroid mass. Nodal metastasis (50-70%). Distant metastasis (10-15%). Flushing, diarrhea, and/or weight loss.

 <u>Hereditary:</u> Most pts detected by genetic screening. Associated disease (pheochromocytoma or hyperparathyroidism. Flushing, diarrhea, and/or weight loss

MACROSCOPIC

- Unilateral (sporadic), multicentric and bilateral (hereditary).
- Usually well defined but not encapsulated

Sporadic unilateral

MEN2A bilateral

AFIP fascicle 4th series

Medullary classic

Solid nests

Fibrous septae with stromal amyloid

Discohesive cells

Epithelioid cells

Plasmacytoid cells

Usually mild atypia and no mitosis

Marked atypia of no prognostic significance

Marked nuclear atypia

Marked nuclear atypia and pseudonuclear inclusions

Pseudonuclear inclusions

IMMUNOPROFILE

- Calcitonin: + (95% of cases)
- Chromogranin +, synaptophysin +, INSM-1 +
- CEA: +
- TTF-1: + (usually patchy)
- Monoclonal PAX8: negative
- Thyroglobulin: negative

IMMUNOSTAINS

Calcitonin

TGB

DIFFERENTIAL DIAGNOSIS Medullary classic

Entity in differential diagnosis	Overlapping feature with medullary classic	Differential features from medullary classic
Solid variant of papillary carcinoma	Solid nests	-Immunoprofile (TGB+, Calcitonin neg) -Papillary carcinoma nuclei
Poorly differentiated thyroid carcinoma	Solid nests	-Immunoprofile (TGB+, Calcitonin neg)
Hyalinizing trabecular tumor	Solid/trabecular growth Hyalinization mimicking amyloid	-Immunoprofile (TGB+, Calcitonin neg) -Papillary carcinoma nuclei
Solid cell nests	Solid growth Rare calcitonin + cells	-P63 +, TTF-1 neg -Stellate shape

Medullary carcinoma, follicular pattern

Medullary carcinoma, follicular pattern (Calcitonin)

Medullary carcinoma, papillary pattern

Medullary carcinoma patterns

Spindle cell pattern

Clear cell pattern

Medullary carcinoma, oncocytic pattern

Medullary carcinoma, "small cell" pattern

DIFFERENTIAL DIAGNOSIS Medullary patterns

Medullary specific pattern	Entity in differential diagnosis	Overlapping feature with medullary pattern	Differential features from medullary pattern
-Follicular	Follicular variant of papillary carcinoma	Follicles	-Immunoprofile (TGB+, Calcitonin neg)
-Papillary	Papillary thyroid carcinoma (PTC), classic	Papillae	-Immunoprofile (TGB+, Calcitonin neg)
-Spindle cell	Papillary carcinoma with spindle cell metaplasia -Anaplastic ca	Spindle cells	-Immunoprofile (TGB+, Calcitonin neg)
-Clear cell	-PTC with clear cells -Renal cell ca	Clear cells	-Immunoprofile (TGB+, Calcitonin neg)

DIFFERENTIAL DIAGNOSIS Medullary patterns

Medullary specific pattern	Entity in differential diagnosis	Overlapping feature with medullary pattern	Differential features from medullary pattern
-Oncocytic	Oncocytic (Hurthle cell) carcinoma	Oncocytes	-Immunoprofile (TGB+, Calcitonin neg)
-Small cell	-Metastatic neuroendocrine ca	-Immunoprofile -small cell	-presence of multiple nodules, interstitial interfollicular pattern of growth, extensive vascular invasion extra-thyroid primary
	-Ewing Family tumors	-Small cells	-EWSR1::FLI1

Molecular profile of sporadic medullary carcinoma

 RET mutation in 50% of cases (RET 918 comprises 80% of RET mutations)

RAS mutation in 20-35% (H-RAS most common)

Rare RET and ALK fusions

Medullary thyroid carcinoma grading

(≇)

Definite histologic description of medullary thyroid carcinoma (1959)

JB. Hazard

WA. Hawk

GC. Crile

MEDULLARY (SOLID) CARCINOMA OF THE THYROID—A CLINICOPATHOLOGIC ENTITY*

JOHN B. HAZARD, M.D., WILLIAM A. HAWK, M.D. AND GEORGE CRILE, JR., M.D.

The Department of Anatomic Pathology, and the Department of General Surgery, The Cleveland Clinic Foundation, and The Frank E. Bunts Educational Institute, Cleveland, Ohio

- Clinical and molecular characteristics (age, sex, TNM stage, serum CEA/calcitonin, type of RET mutation, sporadic versus hereditary disease, distant metastasis, nodal metastatic burden, response to initial therapy, and extent of thyroidectomy.)
- But no grading system

• Pulmonary and pancreatic neuroendocrine neoplasms have well accepted and validated histologic grading systems

Article | Published: 20 April 2020

Memorial Sloan Kettering

Cancer Center-

Grading of medullary thyroid carcinoma on the basis of tumor necrosis and high mitotic rate is an independent predictor of poor outcome

Bayan Alzumaili, Bin Xu, Philip M. Spanheimer, R. Michael Tuttle, Eric Sherman, Nora Katabi, Snjezana Dogan, Ian Ganly, Brian R. Untch 🖾 & Ronald A. Ghossein 🖾

Modern Pathology 33, 1690–1701 (2020) Cite this article

A Proposed Grading Scheme for Medullary Thyroid Carcinoma Based on Proliferative Activity (Ki-67 and Mitotic Count) and Coagulative Necrosis

Fuchs, Talia L. MD^{*,+,++}; Nassour, Anthony J. MBBS^[S]; Glover, Anthony PhD, FRACS^{++,[S]}; Sywak, Mark S. MMedSci FRACS^{++,[S]}; Sidhu, Stan B. PhD, FRACS^{++,[S]}; Delbridge, Leigh W. MD, FRACS^{++,[S]}; Clifton-Bligh, Roderick J. PhD, FRACP^{++,[//]}; Gild, Matti L. PhD, FRACP^{++,[//]}; Tsang, Venessa PhD, FRACP^{++,[//]}; Robinson, Bruce G. MD, FRACP^{++,[//]}; Clarkson, Adele BSc^{*,+}; Sheen, Amy BSc^{*,+}; Sioson, Loretta BSc^{*,+}; Chou, Angela PhD, FRCPA^{*,+,++}; Gill, Anthony J. MD, FRCPA^{*,+,++}

The American Journal of Surgical Pathology Issue: Volume 44(10), October 2020, p 1419-1428 Copyright: Copyright (C) 2020 Wolters Kluwer Health, Inc. All rights reserved. Publication Type: [Original Articles] DOI: 10.1097/PAS.000000000001505 ISSN: 0147-5185 Accession: 00000478-202010000-00014 Keywords: medullary thyroid carcinoma, Ki-67 proliferative index, mitotic count, coagulative necrosis, grading system

Memorial Sloan Kettering Cancer Center (MSKCC) system – a two-tiered approach

Low grade: Mitotic index <5 per 2 mm² and no tumor necrosis

High grade: Mitotic index \geq 5 per 2 mm² and/or tumor necrosis

Sydney system – a three-tiered approach

Mitotic Count/2 mm ²	Ki-67 Proliferative Index (%)	Coagulative Necrosis	Grade
<3	<3	Absent	Low
<3	<3	Present	Intermediate
3-20	3-20	Absent	Intermediate
3-20	3-20	Present	High
>20	>20	Present or absent	High

Correlation between clinicopathologic variables and outcomes (univariate analysis) (Memorial data 144 pts)

	Characteristics (values p values)	DSS	LRFS	DMFS
	Age	0.742	0.227	0.641
	Sex	0.008	0.050	0.018
	Tumor size	0.001	0.042	0.013
<u>Significant</u>	Mitotic index (cut off 2 and10/10 HPFs) ^a	0.025	0.029	<0.001
histologic	Mitotic index (cut off 5/10 HPFs) ^b	<0.001	0.004	0.001
<u>nevere et eve</u>	Atypical mitosis	0.431	0.441	0.435
<u>parameters:</u>	Tumor necrosis	<0.001	<0.001	<0.001
-Mitosis/necrosis	Nuclear pleomorphism	<0.001	0.049	0.072
-nleomorphic nuclei	Amyloid	0.611	0.972	0.538
	Fibrosis	0.501	0.060	0.269
-Encapsulation	Infiltration	0.201	0.033	0.331
vascular invasion	Encapsulation	0.614	0.010	0.704
	Lymphovascular invasion (LVI)	0.041	0.090	0.408
-Extrathvroid	Extent of VI	0.526	0.609	0.009
	Extrathyroidal VI	0.145	0.287	0.188
extension	Extrathyroidal extension	0.013	0.165	<0.001
-margin	Margin	0.013	0.623	0.051
ind gin	Separate focus of MTC	0.679	0.539	0.689
-node size	Nodal status (N0 vs. N1)	0.060	0.005	0.011
	Number of metastatic LN (<5 vs. ≥5)	0.324	0.959	0.859
	Size of largest nodal metastasis	0.022	0.003	0.012
	Extranodal extension	0.215	0.642	0.096
	Post-operative serum calcitonin (all cases)	0.001	0.001	0 004
	Post- operative serum calcitonin (ar cucco)	0.001	0.001	0.001
	those with DM at presentation)	0.003	<0.001	0.004
	Post- operative serum CEA	0.216	0.392	0.188
	DM at presentation	0.046	0.504	NA
	Familial MTC	0.492	0.724	0.844

Non-significant histologic parameters: -Fibrosis -Amyloid -Extra-nodal extension

Mod Pathol April 2020

€

Multivariate analysis (Memorial data)

Except for mitosis and necrosis, no histologic parameters are significant

DSS	P values	Hazard	95% CI	
500	i values	ratio	5570 01	
Sex	0.350	0.193	0.006-6.077	
Tumor size	0.649	1.618	0.204-12.819	
Mitotic index (<5 vs. ≥5/10 HPFs)	0.021	71.606	1.886-2718.969	
Tumor necrosis	0.007	16.381	2.163-124.044	
Nuclear pleomorphism	0.208	5.536	0.387-79.271	
Lymphovascular invasion	0.453	1.998	0.328-12.183	
Extrathyroidal extension	0.575	1.877	0.208-16.945	
Margin	0.536	0.402	0.022-7.204	
Post-op calcitonin level (all cases)	0.114	2.491	0.803-7.732	
DM at presentation	0.562	0.455	0.032-6.527	
LRFS				
Sex	0.745	0.847	0.311-2.306	
Tumor size	0.987	0.994	0.502-1.969	
Mitotic index (<5 vs. ≥5/10 HPFs)	0.122	3.764	0.702-20.183	
Tumor necrosis	0.001	4.672	1.892-11.535	
Nuclear pleomorphism	0.144	2.476	0.733-8.367	
Infiltration	0.977	714036.100	0-indefinite	
Encapsulation	0.193	0.581	0.256-1.317	
Nodal status	0.272	1.901	0.605-5.975	
Post-op calcitonin (all cases)	0.105	1.351	0.939-1.944	
DMFS				
Sex	0.694	0.711	0.130-3.885	
Tumor size	0.553	1.359	0.493-3.749	
Mitotic index (<5 vs. ≥5/10 HPFs)	0.254	4.124	0.361-47.158	
Tumor necrosis	0.001	8.119	2.242-29.401	
Extrathyroidal extension	0.810	0.826	0.173-3.946	
Nodal status	0.176	4.649	0.503-42.964	
Post-op calcitonin (all cases)	0.199	1.596	0.782-3.253	

Univariate and multivariate analysis (Sydney data 76 pts)

- <u>Significant histologic parameters:</u>
 -Mitosis and necrosis
- <u>Non-significant histologic parameters:</u>
 - -Fibrosis
 - -Amyloid
 - -Nuclear grade

Memorial Sloan Kettering

Cancer Center-

ŧ

- -Spindle cell
- -Prominent nucleoli
- -Vascular invasion

Am J Surg Pathol October 2020

Background for medullary thyroid carcinoma grading

• Brigham and women's hospital (Barletta):

Memorial Sloan Kettering

Cancer Center-

⇇

-Validation of MSKCC and Sydney grading in a genotyped cohort of sporadic medullary thyroid carcinoma (*Histopathology* March 2021)

Key Objective:

Memorial Sloan Kettering Cancer Center

• Development of a universal grading system

-Consensus cut-offs for all indices

 Large cohort from multiple international centers

Journal of Clinical Oncology®

An American Society of Clinical Oncology Journal

International Medullary Thyroid Carcinoma Grading System: A Validated Grading System for Medullary Thyroid Carcinoma

Bin Xu, MD, PhD¹; Talia L. Fuchs, MD^{2,3}; Sara Ahmadi, MD⁴; Mohammed Alghamdi, MD¹; Bayan Alzumaili, MD¹; Mohamed-Amine Bani, MD⁵; Eric Baudin, MD⁶; Angela Chou, MD^{2,3}; Antonio De Leo, MD⁷; James A. Fagin, MD⁸; Ian Ganly, MD, PhD⁹; Anthony Glover, MD^{3,10}; Dana Hartl, MD¹¹; Christina Kanaan, MD⁵; Pierre Khneisser, MD⁵; Fedaa Najdawi, MD¹²; Aradhya Nigam, MD⁹; Alex Papachristos, MD^{3,10}; Andrea Repaci, MD¹³; Philip M. Spanheimer, MD⁹; Erica Solaroli, MD¹⁴; Brian R. Untch, MD⁹; Justine A. Barletta, MD¹²; Giovanni Tallini, MD⁷; Abir Al Ghuzlan, MD⁵; Anthony J. Gill, MD^{2,3}; and Ronald A. Ghossein, MD¹

Published online November 03, 2021 - PMID: 34731032

Study cohort

Memorial Sloan Kettering Cancer Center

- 327 patients with resected medullary thyroid carcinoma
 - Royal North Shore Hospital, Sydney, Australia: n=79; (A.Gill)
 - Institut Gustave Roussy, Villejuif, France: n=70; (A. Ghuzlan)
 - Memorial Sloan Kettering Cancer Center, New York, NY, USA: n=69; (Xu B, Untch B, Ghossein R)
 - University of Bologna Medical Center, Bologna, Italy: n=65; (G. Tallini)
 - Brigham and Women's Hospital, Boston, MA, USA: n=44 (J. Barletta)

Parameters collected

- Mitotic count: per 2 mm² at hotspot
- Ki67 proliferation index: 500-2000 cells counted per tumor, at hotspot
- Tumor necrosis

Memorial Sloan Kettering Cancer Center

- <u>Other clinicopathologic parameters:</u> sex, age, tumor size, post-operative serum CEA, post-operative serum calcitonin, AJCC 8th edition prognostic groups, status of *RET* germline mutation, vascular invasion, microscopic extrathyroidal extension, and resection margin status.
- Outcome: Overall survival (OS), Disease specific survival (DSS), Locoregional free survival (LRFS), Distant metastasis free survival (DMFS)

Material and Methods:

Memorial Sloan Kettering Cancer Center

- Retrospective cohort of 327 patient's with Medullary carcinoma from five centers across the United States, Europe, and Australia
- All slides were reviewed by expert thyroid pathologists at participating sites who were blinded to the patients' outcome
- The mitotic count and Ki67 proliferative index were evaluated using the same methods proposed for gastrointestinal neuroendocrine tumors (GINET)
- Necrosis (present or absent) regardless of its extent

Tumor necrosis:

Determination of a Consensus Grading Scheme:

- Both the MSKCC and Sydney grading schemes and eight other potential grading schemes were investigated using various cutoffs for
 - Mitotic index
 - Ki67

Memorial Sloan Kettering Cancer Center

- Tumor necrosis
- Consensus conference was held, and a single system was agreed upon

International Medullary Thyroid Carcinoma Grading System (IMTCGS)

International Medullary Thyroid Carcinoma Grading System (IMTCGS)

• A medullary thyroid carcinoma is considered high-grade when it had at least one of the following three criteria:

1.Mitotic index ≥ 5 per 2 mm² 2.Ki67 proliferative index ≥ 5% 3.Tumor necrosis

Mitosis and Ki-67 should be reported as a continuous variable prognosis worsens as the proliferative activity of a tumor increases

INTERNATIONAL MEDULLARY THYROID CARCINOMA GRADING SYSTEM

FIG 2. Kaplan-Meier curves for survival according to the international medullary thyroid carcinoma grading system. DMFS, distant metastasis-free survival; DSS, disease-specific survival; LRRFS, locoregional recurrence-free survival; OS, overall survival.

TAE	BLE 3.	Three-	Year, Five-	Year, ar	nd Ten-Year	Survival	According to
the	Intern	ational	Medullary	Thyroid	Carcinoma	Grading	System
-							

Survival	All	LG	HG
OS			
3-year	90 (87 to 94)	96 (94 to 99)	73 (62 to 84)
5-year	88 (84 to 92)	96 (93 to 99)	66 (54 to 78)
10-year	80 (74 to 86)	91 (85 to 96)	47 (31 to 63)
DSS			
3-year	93 (90 to 96)	98 (96 to 100)	78 (67 to 88)
5-year	91 (88 to 95)	98 (96 to 100)	71 (58 to 83)
10-year	87 (82 to 92)	97 (94 to 100)	53 (37 to 70)
DMFS			
3-year	78 (73 to 83)	90 (86 to 94)	44 (32 to 56)
5-year	76 (71 to 82)	88 (84 to 93)	41 (28 to 53)
10-year	71 (65 to 77)	84 (78 to 90)	31 (17 to 44)
LRRFS			
3-year	79 (74 to 84)	89 (84 to 93)	47 (35 to 60)
5-year	74 (68 to 79)	85 (80 to 90)	37 (24 to 50)
10-year	69 (63 to 76)	82 (75 to 88)	28 (13 to 43)

<u>10 year disease</u> <u>specific survival</u>: -Low grade: 97% -High grade: 53%

-Low grade: 84% 5-year 74 (68 to 79) -High grade: 31% 10-year 69 (63 to 76) NOTE. Values are expresse Abbreviations: DMFS, dista

10 year distant

Metastasis free

survival:

NOTE. Values are expressed as cumulative survival % (95% Cl). Abbreviations: DMFS, distant metastasis-free survival; DSS, diseasespecific survival; HG, high grade; LG, low grade; LRRFS, locoregional recurrence-free survival; OS, overall survival. ŧ

Subgroup analyses

Prognostic significance of consensus grading for each participating site was maintained

	Univ of Bologna	Brigham& women (Boston)	Inst.Gustave Roussy (Paris)	Memorial Hospital (NY, NY)	Royal N.S. (Sydney)
Overall survival	0.011	<0.001	0.015	<0.001	<0.001
Disease specific survival	0.011	<0.001	0.032	<0.001	<0.001
Locoregional recurrence free survival	0.074	<0.001	<0.001	<0.001	<0.001
Distant metastasis free survival	<0.001	<0.001	<0.001	0.001	<0.001

聿

CONSENSUS GRADING SYSTEM INDEPENDENT PREDICTOR OF OUTCOME

TABLE 4. Multivariate Survival Analysis Using Cox Proportional Hazards Model to Identify Prognostic Factors in Medullary Thyroid Carcinoma

		(IS			DSS		DI	MFS			LRRFS
Parameter	P	HR	95% CI	P	HR	95% CI	Р	HR	95% CI	P	HR	95% CI
IMTCGS	< .001	10.847	2.903 to 40.531	.017	8.491	1.461 to 49.327	.045	2.267	1.018 to 5.049	.042	1.938	1.044 to 3.876
Sex	.981	0.981	0.338 to 2.880	.684	1.304	0.363 to 4.685	.363	1.389	0.684 to 2.819	.274	1.467	0.738 to 2.915
Tumor size	.950	1.008	0.777 to 1.308	.998	1.000	0.729 to 1.372	.991	1.001	0.857 to 1.168	.067	1.141	0.991 to 1.314
Postoperative CEA	.054	1.000	1.000 to 1.000	.013	1.000	1.000 to 1.000	.030	1.000	1.000 to 1.000	.480	1.000	1.000 to 1.000
AJCC eighth prognostic grouping	.008	3.384	1.367 to 8.374	.923	61.047	0 to 1E+38	< .001	2.712	1.596 to 4.606	.004	1.819	1.215 to 2.725
Vascular invasion	.081	0.290	0.072 to 1.163	.565	0.575	0.087 to 3.797	.511	1.397	0.515 to 3.788	.014	3.690	1.303 to 10.452
Microscopic extrathyroidal extension	.848	1.149	0.278 to 4.749	.647	0.695	0.146 to 3.309	.524	0.756	0.319 to 1.790	.425	1.399	0.613 to 3.191
Margin status	.579	1.331	0.485 to 3.649	.651	1.324	0.392 to 4.472	.027	2.287	1.099 to 4.762	.973	0.988	0.478 to 2.041
Age	.014	1.051	1.010 to 1.093	.036	1.057	1.004 to 1.112						
External beam radiotherapy	.989	1.008	0.331 to 3.070				.116	1.794	0.866 to 3.713	.288	1.505	0.708 to 3.202
Postoperative calcitonin				.118	1.000	1.000 to 1.000	.049	1.000	1.000 to 1.000			
RET germline mutation				.960	0.000	0 to 1.3E+177						

NOTE. Age, tumor size, postoperative CEA, and calcitonin are treated as continuous variables. Bold P values are significant P values.

Abbreviations: AJCC, American Joint Committee on Cancer; CEA, carcinoembryonic antigen; DMFS, distant metastasis-free survival; DSS, disease-specific survival; HR, hazard ratio; IMTCGS, International Medullary Thyroid Carcinoma Grading System; LRRFS, locoregional recurrence-free survival; OS, overall survival.

Validation of the IMTG system

• Consensus grading independent predictor of DFS in an Independent cohort of 101 MTC including 68 sporadic cases.

Vissio E,..., Papotti M. *Endocr Pathol* 2022

• Consensus grading independent prognostic factor in a cohort of 87 cases

Lubin DJ,..., Viswanathan K. *Mod Pathol* 2023

• Consensus grading reproducible between academic pathologists

Williams JF,..., Barletta J. Endocr Pathol 2022

66 year old male Mo at presentation Dead of disease 2 years and 3 month after thyroidectomy.

BIG QUESTION

 MUTATION AND GRADE IN MEDULLARY THYROID CARCINOMA

Association of the Genomic Profile of Medullary Thyroid Carcinoma with Tumor Characteristics and Clinical Outcomes in an International Multicenter Study

Bin Xu MD, PhD^{1*}, Kartik Viswanathan MD^{2*}, Mahsa S. Ahadi MD^{3,4,5}, Sara Ahmadi MD⁶, Bayan Alzumaili MD¹, Mohamed-Amine Bani MD⁷, Eric Baudin MD⁸, David Blake Behrman MD², Marzia Capelletti MD⁹, Nicole G Chau MD⁹, Federico Chiarucci MD¹⁰, Angela Chou MD^{3,4,5}, Roderick Clifton-Bligh MD^{3,4,5}, Sara Coluccelli MD¹⁰, Dario de Biase MD¹¹, Antonio De Leo MD¹⁰, Snjezana Dogan MD¹, James A. Fagin MD¹², Talia L. Fuchs MD^{3,4,5}, Anthony Robert Glover MD³, Julien Hadoux MD⁸, Ludovic Lacroix MD⁷, Livia Lamartina MD⁸, Daniel J. Lubin MD², Catherine Luxford PhD^{3,4,5}, Kelly Magliocca DDS, MPH², Thais Maloberti MD¹⁰, Abhinita S. Mohanty MSc¹, Fedaa Najdawi MD⁹, Aradhya Nigam MD¹³, Alexander James Papachristos MD^{3,4,5}, Andrea Repaci MD¹⁴, Bruce Robinson MD^{3,4,5}, Jean-Yves Scoazec MD⁷, Qiuying Shi MD², Stan Sidhu MD^{3,4,5}, Erica Solaroli MD¹⁵, Mark Sywak MD^{3,4,5}, R. Michael Tuttle MD¹², Brian Untch MD¹³, Justine A. Barletta MD⁹, Abir Al Ghuzlan MD⁷, Anthony J. Gill MD^{3,4,5}, Ronald Ghossein MD^{1*}, Giovanni Tallini MD^{10*}, Ian Ganly MD, PhD^{13*} Thyroid (In Press)

RET somatic mutation was associated with adverse clinicopathologic features

	<i>RET</i> somatic mutations	<i>RET/RAS</i> wild type (WT)	P values
Tumor size (cm, median, range)	2.1 (0.4-8.0)	1.9 (0.3-6.0)	0.036
AJCC prognostic group 4	77 (56.6%)	15 (24.6%)	<0.001
Vascular invasion	76 (55.9%)	20 (32.8%)	0.005
IMTCGS high grade	48 (35.3%)	11 (18.0%)	0.027

- RET germline mutations were only associated with younger age at MTC diagnosis.
- RAS somatic mutations did not alter clinicopathologic parameters.

Mutations and survival

 No impact of RET, RET p.M918T, and RAS mutations on overall and disease specific survival (OS and DSS)

RET germline or somatic mutations were associated with decreased distant metastasis free survival (DMFS) on univariate analysis

Univariate log rank test	P values
RET somatic vs. RET germline	0.745
RET somatic vs. RET/RAS WT	0.010
RET germline vs. RET/RAS WT	0.045
RAS mutated vs. RET/RAS WT	0.081
RET M918T somatic vs. other RET somatic	0.375

RET or *RAS* mutations did not impact overall survival (OS), disease specific survival (DSS), and locoregional recurrence free survival (LRRFS).

RET or **RAS** mutation was **NOT** an **independent prognostic factor for DMFS**

	P values	Hazard ratio (95% confidence interval)
RET or RAS mutations		
RET and RAS wild type	Reference	
RET germline mutations	0.154	1.945 (0.779-4.856)
RET somatic mutations	0.217	1.525 (0.780-2.979)
RAS somatic mutation	0.147	0.428 (0.136-1.349)
IMTCGS high grade	0.006	2.031 (1.230-3.353)
AJCC stage group 4	<0.001	1.478 (1.221-1.789)

IMTCGS high grade and AJCC stage group 4 remained as independent adverse prognostic factors for DMFS.

Other molecular alterations in MTC

TP53: 8/191, 4% PIK3CA: 2/191 1% VHL: 2/191, 1% TERT promoter mutation: 2/191 1% ATM: 2/87, 2.3% ARID2: 2/70, 2.9% SETD2: 2/70, 2.9% KMT2A: 2/70, 2.9% KMT2C: 2/70, 2.9%

TP53 was associated with decreased overall, disease-specific and locoregional recurrence free survival

Potential benefits of grading medullary thyroid carcinoma

Memorial Sloan Kettering Cancer Center

• Stratification of patients for early lateral neck dissection, close follow up, low thresholds for cross-sectional imaging, and careful work-up for distant metastasis.

• Datapoint for clinical trial: (High grade may benefit more from adjuvant therapy)

CONCLUSIONS

• Medullary thyroid carcinoma often underdiagnosis because rare

• Every case should be immunostained. (High price for a mistake)

• Grading should be performed

• THE END

Remaining question

- Mutation and grade in sporadic tumors
- One paper shows no correlation between grade and sporadic mutation

Histopathology

Histopathology 2021, 79, 427-436. DOI: 10.1111/his.14370

Evaluation of grade in a genotyped cohort of sporadic medullary thyroid carcinomas

Fedaa Najdawi,¹ Sara Ahmadi,² Marzia Capelletti,³* Fei Dong,¹ Nicole G Chau^{4†} & Justine A Barletta¹ ¹ ¹Department of Pathology, ²Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, ³Lowe Center for Thoracic Oncology, and ⁴Head and Neck Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA

Date of submission 11 March 2021 Accepted for publication 22 March 2021 Published online *Article Accepted* 24 March 2021

Najdawi F, Ahmadi S, Capelletti M, Dong F, Chau N G & Barletta J A (2021) *Histopathology* **79**, 427–436. https://doi.org/10.1111/his.14370

Evaluation of grade in a genotyped cohort of sporadic medullary thyroid carcinomas

• An

Memorial Sloan Kettering

Cancer Center-

WHO classification
Follicular adenoma
Hyalinizing trabecular tumour
Other encapsulated follicular-patterned thyroid tumours
Follicular tumour of uncertain malignant potential
Well-differentiated tumour of uncertain malignant potential
Noninvasive follicular thyroid neoplasm with papillary-like nuclear features
Papillary thyroid carcinoma (PTC)
Papillary carcinoma
Follicular variant of PTC
Encapsulated variant of PTC
Papillary microcarcinoma
Columnar cell variant of PTC
Oncocytic variant of PTC
Follicular thyroid carcinoma (FTC), NOS
FTC, minimally invasive
FTC, encapsulated angioinvasive
FTC, widely invasive
Hürthle (oncocytic) cell tumours
Hürthle cell adenoma
Hürthle cell carcinoma
Poorly differentiated thyroid carcinoma
Anaplastic thyroid carcinoma
Squamous cell carcinoma
Medullary thyroid carcinoma
Mixed medullary and follicular thyroid carcinoma

Mucoepidermoid carcinoma Sclerosing mucoepidermoid carcinoma with eosinophilia Mucinous carcinoma Ectopic thymoma Spindle opitholial tumour with thymus like differentiation

Spindle epithelial tumour with thymus-like differentiation Intrathyroid thymic carcinoma

Paraganglioma and mesenchymal/stromal tumours	
Paraganglioma	8693/3
Peripheral nerve sheath tumours (PNSTs)	
Schwannoma	9560/0
Malignant PNST	9540/3
Benign vascular tumours	
Haemangioma	9120/0
Cavernous haemangioma	9121/0
Lymphangioma	9170/0
Angiosarcoma	9120/3
Smooth muscle tumours	
Leiomyoma	8890/0
Leiomyosarcoma	8890/3
Solitary fibrous tumour	8815/1
Hematolymphoid tumours	
Langerhans cell histiocytosis	9751/3
Rosai-Dorfman disease	
Follicular dendritic cell sarcoma	9758/3
Primary thyroid lymphoma	
Germ cell tumours	
Benign teratoma	9080/0
Immature teratoma	9080/1
Malignant teratoma	9080/3
Secondary tumours	
	WHO Classification of Tumours of Endocrine Organs
I he first four digits indicate the specific histological term; the fifth digit after the	
behavior code, including /0 for benigh tumours, / I for unspecified, borderline, behavior /2 for carcinoma in situ and grade III intraepithelial peoplesia, and /	

* These new codes were approved by the IARC/WHO Committee for ICD-O

VHO classification of tumours of the thyroid gland (2017)

8330/0 8336/1*

8335/1*

8348/1*

8349/1*

8260/3 8340/3 8343/3 8344/3 8344/3 8342/3 8330/3 8335/3 8339/3 8330/3

8290/0 8290/3 8337/3 8020/3 8070/3 8345/3 8346/3 8430/3

8430/3

8480/3

8580/3

8588/3

8589/3

tumours

Memorial Sloan Kettering WHO Classification of Thyroid Neoplasms, 5th ed

Developmental Abnormalities

- 1. Thyroglossal duct cyst
- 2. Other congenital thyroid abnormalities

Follicular Derived Neoplasms

- 1. Benign Tumors
 - a. <u>Thyroid follicular nodular disease*</u>
 - b. Follicular adenoma
 - c. Follicular adenoma with papillary architecture*
 - d. <u>Oncocytic adenoma of the thyroid*</u>
- 2. Low Risk Neoplasms
 - a. Non-invasive follicular thyroid neoplasm with papillary-like nuclear features
 - b. Thyroid tumors of uncertain malignant potential
 - c. Hyalinizing trabecular tumor
- 3. <u>Malignant Neoplasms</u>
 - a. Follicular thyroid carcinoma
 - b. <u>Invasive encapsulated follicular variant papillary carcinoma*</u>
 - c. Papillary thyroid carcinoma
 - d. <u>Oncocytic carcinoma of the thyroid*</u>
 - e. Follicular-derived carcinomas, high-grade*
 - i. Differentiated high-grade thyroid carcinoma
 - ii. Poorly differentiated thyroid carcinoma
 - f. Anaplastic follicular cell derived thyroid carcinoma

Thyroid C-cell Derived Carcinoma

1. Medullary thyroid carcinoma

Mixed Medullary and Follicular-cell Derived Carcinomas

Salivary Gland-type Carcinomas of the Thyroid*

- 1. Mucoepidermoid carcinoma of the thyroid
- 2. Secretory carcinoma of salivary gland type

Thyroid tumors of uncertain histogenesis*

- 1. Sclerosing mucoepidermoid carcinoma with eosinophilia
- 2. Cribriform morular thyroid carcinoma

Thymic Tumors Within the Thyroid

- 1. Thymoma family
- 2. Spindle epithelial tumour with thymus-like elements
- 3. Thymic carcinoma family

Embryonal Thyroid Neoplasms

1. Thyroblastoma

Squamous cell carcinoma of thyroid

• Separate entity from anaplastic carcinoma in WHO 2017

• Now a form of anaplastic carcinoma (WHO 2022)

Memorial Sloan Kettering Cancer Center. Thyroid squamous cell carcinoma: a form of Anaplastic carcinoma in WHO 2022

- Defined as a separate entity in WHO 2017:
 - Comprised entirely of tumor cells with squamous differentiation
 - No evidence of other type of thyroid carcinoma
- Similar molecular profile as other ATC
 - BRAFV600E 60%
- Similar outcome as other ATCs
 - Median overall survival 14 months (vs. 10 months)

WHO 2022

- Cribriform morular variant of papillary carcinoma
- Renamed as cribriform morular thyroid carcinoma.

WHO 2022 Cribriform Morular Thyroid Carcinoma

- Previously termed as "Cribriform Morular Variant of Papillary Thyroid Carcinoma"
- Do not display *BRAFV600E* mutation
- Rarely have *RAS* or *PIK3CA* mutations
- Frequent genetic alterations Wnt/beta-catenin pathway.
- APC mutations being the most common
 - Both the familial and sporadic setting
- Mutations in other genes involved in the Wnt/Beta-catenin pathway *CTNNB1*
- TTF1 expression only in the cribriform elements
- Absence/focal weak PAX8 and thyroglobulin expression
- Radioactive iodine may not be needed

Boyraz B, Sadow PM, Asa SL, Dias-Santagata D, Nosé V, Mete O. *Endo Pathol* 2021